

BASIC, CASL, C, ASM, FX Statistik, F.Com, DataBank
FX-870P = 64Kb, VX-4 = 8Kb Standart RAM

8-Bit-CPU HD61700 Cross Assembler from Hitachi

Casio FX-870P
Casio VX-4

Casio FX-870P Casio VX-4

TABLE OF CONTENTS ... 2

INTRODUCTION ABOUT FX-870P / VX-4 ... 5

I. BASIC OPERATION ... 6

1-1 CASIO VX-4 ... 6
1-2 BATTERY REPLACEMENT ... 7
1-3 POWER ON / OFF AND CONTRAST ADJUSTMENT .. 9
1-4 VX-4 - FX-870P - MODI ... 10
1-5 CALCULATION IN CAL- OR RUN-MODE... 12
1-6 DISPLAY .. 15

Display 4 Lines and virtuell Display 8 Lines ... 15
Selftest: ... 15

1-7 ACCESSORIES FOR THE FX-870P / VX-4 .. 18
FP-40: ... 19
FA-6: ... 19
MD-110 .. 20
FA-8: ... 21
RS232C: .. 21
RP-8 = 8Kb, RP-33 = 32Kb RAM Speicher: ... 22
USB-Interface-Kabel for FX-850P to VX-4 (Inet 2020) ... 22

1-8 ROMAJI – TABELLEN (SHIFT CAPS & …) .. 24

II. BASIC - REFERENZ ... 26

TABLE OF CONTENTS .. 26
THE FX-850P, FX-870P, FX-880P, FX-890P, VX-1 TO 4, Z-1 AND PB-1000 SERIES .. 29
2-1 THE BASIC TOKEN .. 30
2-2 HOW TO ENTER BASIC MODE ... 31
2-3 GRAMMAR OVERVIEW ... 31
2-4 BASIC MANUAL COMMANDS ... 34
2-5 BASIC PROGRAM COMMANDS.. 37
2-6 FILE DESCRIPTOR .. 47
2-7 BASIC BUILT-IN FUNCTIONS ... 48
2-8 BASIC LOGICAL OPERATIONS, ETC. .. 53
2-9 ARITHMETIC PRIORITY .. 54
2-10 BASIC ERROR MESSAGES ... 55
2-11 CHARACTER CODE TABLE .. 58

III. INTERNAL INFORMATION .. 60

TABLE OF CONTENTS .. 60
3-1 MACHINE LANGUAGE RELATED .. 61

Memory Map .. 61
System Area (BASIC) ... 63
ROM Routine .. 68

3-2 BASIC RELATED ... 83
Hidden BASIC Instructions .. 83
BASIC Program and (Text) File Storage Format .. 83
Storage Format of Variable Data ... 88

3-3 APPENDIX .. 96
3-4 BASIC PROGRAMS .. 100

file:///F:/120_Geraete/120_Geraete_gekauft/Pocket_Taschenrechner/Casio/FX-870p_VX-4%20%20%20%20%20%20%20%20---%23/Casio_VX-4_BA_A4hoch.docx%23_Toc35251536

IV. C - REFERENZ ... 104

4-1 SIDES FROM THE ORIGINAL MANUAL: ... 104
4-2 THE C-CODE IN ORIGINAL MANUAL .. 111

V. F:COM .. 127

VI. STAT ... 130

VII. HD61700 CROSS ASSEMBLER .. 132

TABLE OF CONTENTS .. 132
LIST OF PSEUDO INSTRUCTIONS .. 133
LIST OF REGISTERS ... 133
LIST OF MNEMONICS .. 134
7-1 HD61700 CROSS ASSEMBLER .. 137

Assembling Method .. 137
Assembler Options .. 138
Execution of Output Format and Machine Language ... 139
Error Message .. 141

7-2 MPU ARCHITECTURE ... 142
Features .. 142
Register Configuration .. 142

7-3 ASSEMBLER ... 148
Assembler Format .. 148
Pseudo Instructions .. 148
Programming Points ... 152
Mnemonic Format .. 153

7-4 MNEMONIC ... 155
7-5 INSTRUCTION SET TABLE ... 221
7-6 APPENDIX .. 221

Output Format and Loader ... 221
7-7 REFERENCES AND LINKS .. 226
7-8 FIGURE ... 227
7-9 REVISION INFORMATION ... 228

VIII. CASL .. 229

8-1 WHAT IS CASL / COMET? .. 229
8-2 JAPANESE CASL WIKIPEDIA ARTICLE ... 230

Overview ... 230
COMET Specification .. 230
The following Data Types are Supported: ... 230
The Registers are as Follows: .. 230
Instruction Format: ... 231
Instruction set summary: .. 231
CASL Specification... 233
CASL supports the following pseudo instructions: .. 233
CASL includes macro instructions for Input and Output: .. 233
Error Messages ... 234
CASL Menu.. 234
COMET Menu ... 234
Example Programs.. 236

8-3 CASL FROM THE ORIGINAL MANUAL .. 240
a CASL Project „Jozan“ .. 241
The CASL Code in the Original Manual ... 244

8-4 CASL FROM INET-SITE: HTTP://WWW5A.BIGLOBE.NE.JP … .. 256
The CASL introduction corner – Table Contents .. 256
1. Basic structure of CASL II Program.. 257
2. Load / store instruction .. 258
3. Operation instruction ... 259
4. Comparison operation instruction .. 262
5. Branch Instruction .. 263

6. Shift operation instruction .. 265
7. Stack operation instructions ... 267
8. Call return instruction ... 267
9. Other instructions ... 268
10. Macro instruction ... 269
11. Assembler instructions .. 270

IX. MANUALS ... 272

Kapitel: Introduction about FX-870P / VX-4

1-1 Casio VX-4 Seite 5

FX-870P / VX-4 is a Model Developed from PB-100 Series.
8-bit CPU Hitachi's HD61700

Caution: This content is centered on the manual included with Casio Computer Co. Ltd. VX-4.

Furthermore, there is no German or English manual for the Casio FX-870P and the VX-4.

!! This manual is based on the Japanese article and Pages from the original manual !!

http://luckleo.cocolog-nifty.com/pockecom/VX-4/HTML/fx-870p_manual_jp.html .

It ist only written in japanes languarge. Its was translated with Google-Translater in english and

manual corrected (the german translation was to crazy. e.g. Basic words was translated

incorrectly, Sentences have been translated incomprehensibly). Errors cannot be rulet out ! In

some cases there is information from the original jap. operating instructions.

However, since the release date of information is often old, please avoid making inquiries to

Casio Computer Co., Ltd.

① Because the internal calculation accuracy is higher than that of other companies, more

accurate calculation is possible in complicated calculations and financial calculations.

② 10 program areas and 10 file areas,

③ Formula function,

④ Data Bank function,

⑤ Statistical processing function,

⑥ A relatively powerful BASIC that can use labels in other dimensions, but can use variable

names of up to 255 characters,

⑦ C language interpreter,

⑧ CASL,

⑨ With an 8-bit CPU called Hitachi's HD61700 and an operating frequency of 910 KHz and

many instructions of 10 to 20 clocks, the power consumption of the Pokécon is 0.08W with a

processing performance of less than 0.1 MIPS. Time is secured (0.08W is estimated to be the

maximum rating in the calculation)

This is a feature.

On the other hand, as a disadvantage,

① Execution of self-made machine language programs was not officially supported (executable

with hidden instructions),

② The liquid crystal is 191 x 32 dots, and the dot interval is perfectly uniform and suitable for

graphic display, but it does not support graphic-elated instructions. Graphics are only possible

through machine language,

③ Inconvenient because labels cannot be used in BASIC,

④ Program execution speed in C language is 10x faster than BASIC, and C language can only

be used for learning.

⑤ The VX-4 with only 8 Kb of memory consumes about 3.3KB in the system area, so an

optional RP-33 or an additional memory upgrade is required to execute the appropriate

program.

Kapitel: I. Basic Operation

1-1 Casio VX-4 Seite 6

1-1 Casio VX-4

Table 1-0. FX-870P / VX-4 Modi with Mode Key

Mode Key & Methode Overview of Modes

0 CAL Mode Selected when power ist switched ON

1 BASIC 10 programs writing / editing

4 DEG angle unit = degree

5 RAD angle unit = radians

6 GRA angle unit = grads

7 Print ON

8 PRINT OFF

9 MEMO IN Data Bank function

CASL / F.COM

Shift Key

Fx / C Mode Select /
Contrast

Break / ON

Execute All Reset

CAPS / jp. Romaji

RS232C Connector

MEMO / Line Search

OFF

Formula Storage Keys

Cursor Keys

Alphabet Keys

Mode

Power IN

Symbols Display

Display Languages

Kapitel: I. Basic Operation

1-2 Battery replacement Seite 7

1-2 Battery Replacement

The battery used by FX-870P / VX-4 is

Battery for operation : 4x AA Batteries

Battery for data storage : 1x CR1220 Backup

Batterie

The battery does not start when the ON key ("BRK"

key) is pressed , or the battery needs to be replaced

when a low battery message is displayed after the ON

key is pressed.

As a precaution when replacing batteries,

• If the operating battery and data storage battery are removed at the same time, data such as
programs will not be saved.

• When the operating battery and data storage battery are removed at the same time, it is necessary
to press the P button on the back of the main unit and the ALL RESET button on the front of the
main unit in turn with a thin stick like a toothpick.

Is mentioned.
Replacing the operating battery (AA batteries; AA batteries)

1. Turn the three metal pig screws of the main unit with a
coin to remove the metal pig.

2. When you remove the metal pig, there is a slide switch
engraved on and off on the back of the main unit. Turn
that switch off.

3. Slide the battery slide pig while pressing ▼ to remove the
battery slide pig.

4. Take out the old battery and set four AA batteries (AA
batteries) according to the instructions on the inner electrode.

5. Refit the battery slide pig.
6. Set the slide switch to ON.
7. Insert a metal pig and tighten the three screws.

Replacement of data storage battery (CR1220) Since the life of the data
storage battery is 24 months, it must be replaced once every two years.

1. Turn the three metal pig screws of the main unit with a coin to
remove the metal pig.

2. When you remove the metal pig, there is a slide switch engraved
on and off on the back of the main unit. Turn that switch off.

3. Loosen the small screw that is tightened and remove the retainer
plate, because the bottom of the circular retainer plate with a
diameter of about 1 inch (2.54 cm) near the slide switch is where
the CR1220 is set.

4. Set the battery with the + electrode of CR1220 facing up (the side
closer to the pressing plate when the pressing plate is fitted).

5. Fit the holding plate and tighten the small screw.
6. Set the slide switch to ON.
7. Insert a metal pig and tighten the three screws.

Kapitel: I. Basic Operation

1-2 Battery replacement Seite 8

As a precaution when replacing AA batteries (AA batteries) or CR1220, leave the slide switch OFF during the
replacement.

Note that if the FX-870P and VX-4 fail to start normally before replacing the battery, for example because they
have not been used for a long time, the P button on the back of the main unit and the front of the main unit
Press the ALL RESET button sequentially with a stick with a thin tip like a toothpick. After pressing ALL RESET,

*

 A l l r e s e t / M e m o r y

 R A M : 8 K B + 0 K B

*

When the "BRK" key is pressed and the above message disappears, all memories are initialized and all stored
data can be used after being erased. In the above message, the first number following "RAM:" is the RAM
capacity of the main unit, and the latter number is the capacity of the additional RAM such as RP-33. Check the
memory capacity of FX-870P / VX-4. it can.

The ・ P button on the back of the main unit

• I was shocked by strong static electricity,
• Executed machine language and run out of pocket

Used when it does not operate normally due to the above.
• The P button and ALL RESET button are not obtained and analyzed, so they are speculated from other
sources, but they seem to be CPU reset and key interrupt, respectively. Therefore,

• The P button resets the CPU, performs the CPU initialization routine, and performs the minimum CPU
settings (for example, assigning constants to registers $ 30 and $ 31), but does not initialize the RAM.

• Pressing the ALL RESET button is detected by the key matrix standard input routine, and the RAM
initialization routine is executed.

I guess it is a two-stage configuration.
Low battery display When the battery is depleted and the battery needs to be replaced, a low battery
message is displayed as shown below. In that case, AA batteries (AA batteries) must be replaced as described
above.

-

 L o w B a t t e r y ! ! !

 Te The N H ｦ The C K N S Te K Data The The Y

-

It can be used even if this display appears, but the power is forcibly turned off after about 1 hour. In that
case, the FX-870P / VX-4 does not turn on when you press the ON key, so you should replace the battery as
soon as the low battery indicator appears. Leaving the battery without replacing it may cause battery leakage
or data corruption.

If an error occurs during programming and the battery is depleted, "Low Battery !!!" appears and then an error
message is displayed.

Kapitel: I. Basic Operation

1-3 Power ON / OFF and contrast adjustment Seite 9

(note)
The button battery model number is determined by the international standard IEC60086 so that the battery
specifications can be understood. In the case of CR1220, C means that the battery system is a manganese
dioxide / lithium battery (nominal voltage: 3.0V), and R means round. 1220 represents a diameter of 12 mm
and a thickness of 2.0 mm.

1-3 Power ON / OFF and Contrast Adjustment

Power on

The right "BRK" key on the right also serves as the ON key, so press this button. If it starts normally,

the CAL mode is entered, the cursor blinks and the input is waited.

If there is no response when pressed, the possibilities other than failure and the corrective actions are

as follows.

• It is operating normally, but the LCD contrast is 0 and the display is not visible. → Adjust the LCD
contrast.

• Continued use with Low Battery, or the system is in some sort of runaway state. → Press the P button
on the back of the main unit with a stick with a thin tip such as a toothpick. If this happens, the
program or file may be safe. If you are worried, press the ALL RESET button again to initialize the RAM.

• The AA battery for operation has run out. → Replace the AA batteries and, in some cases, replace the
CR1220 for data storage.

Power off

Press the OFF button in the upper left to turn off the power.
In addition, if the computer is left waiting for input, that is, when FX-870P / VX-4 is not performing
calculations, the power is automatically turned off in a fixed time (several minutes).
This is called an auto power off function . When the power is turned off with auto power off, all mode
settings such as the number of digits are cancelled, but files such as programs, mathematical formula
storage, and materialized variable values remain saved.

Contrast adjustment

• Press the "CONTRAST" key, that is, the "SHIFT" key and then the "MODE" key.
• Contrast up with the “↑” key just below the LCD and contrast down with the “↓” key. When you want

to finish, press any other key.

If this still does not display correctly, it is likely that the battery has run out.

Kapitel: I. Basic Operation

1-4 VX-4 - FX-870P - Modi Seite 10

1-4 VX-4 - FX-870P - Modi

FX-870P / VX-4 has 6 modes besides CAL mode like scientific calculator.
Table 1-1 shows how to enter each mode and a brief description of each mode.

Table 1-1. FX-870P / VX-4 Modes and Transition Methods

Mode Migration method Overview of Modes

CAL Default mode when power is turned on.
Press "SHIFT" (red "S" key), then press
"0".

Scientific calculator-like function and formula
memory calculation function.
see FX-880P manual …

Databank /
Memo-in Mode

Press "SHIFT" (red "S" key), then press
"9".

Data (memo) input and search.
see FX-880P manual …

FX (Statistical
Calculation)

Press the "FX" key at the top. Statistical calculation and training board (not
covered).

F.COM Press the "F.COM" key, that is, the
"SHIFT" key and then the "CASL" key.

Input / output of files including BASIC
programs to external devices. File operations
such as editing / deleting.

BASIC Press the "MODE" key in the upper right
and then press "1".
When the numeric key (0-9) is pressed
after pressing "SHIFT" (red "S" key) in
CAL mode, if a BASIC program exists in
the program number of the pressed
number, execute it. Start.

BASIC mode.
No grafical Funktions inside

C Language Press the “¢” key, that is, the “SHIFT” key
and then the “FX” key.

C language mode.
10x faster than BASIC
see Z-1GR and PB-2000 C-manual …

CASL Press the “CASL” key. CASL mode. Only japanese manuals.
see also Sharp PC-G850V manual …

Formular Storage
function

Keys „IN“, „OUT“, „CALC“ Store often used formulas in memory for
calculation. This funktion is applied in CAL-
Mode. see FX-880P manual …

Kapitel: I. Basic Operation

1-4 VX-4 - FX-870P - Modi Seite 11

Kapitel: I. Basic Operation

1-5 Calculation in CAL- or RUN-Mode Seite 12

1-5 Calculation in CAL- or RUN-Mode

In FX-870P / VX-4, for example, you can calculate in CAL mode or use PRINT statement in BASIC.

PRINT A

Even if is executed, the mantissa part displays only a maximum of 10 digits, and values in the range of

0 and ± 1 × 10 -99 to ± 9.999,999,999 × 10 99 seem to be the limit, but FX-870P / VX The numerical

value of -4 is expressed and calculated internally by BCD with 13 digits for mantissa and 2 digits

for exponent (0 and ± 1 × 10 -99 to ± 9.999,999,999,999 × 10 99). Saved.

For example,

A = 1.123456789012 and enter

PRINT A

Even if you do

1.123456789

(The SET statement only drops the number of display

digits). However, using the PRINT USING statement,

PRINT USING "#. ############"; A

If you execute

1.123456789012

Is output, confirming that the internal precision is up to

13 digits.

Also,

PRINT USING "#. ###############"; 1/9

Run

0.111111111111100

It is confirmed that the internal accuracy is 13 digits.

FX-870P / VX-4 performs rounding after the four arithmetic operations by default (at initialization)

and MODE10 . The rounding method is

• When the 11 to 13 digit number is 049 or less,
• Round up when 11 to 13 digits are 950 or more

It is. Also, rounding after the four arithmetic operations can be disabled by MODE11 .
To check the rounding process, first enable the rounding process with MODE10,

A = 1.123456789049
PRINT USING "#. ############"; A
And run continuously. At this time, A = 1.123456789049 is displayed, and it can be confirmed that the constant
substitution is not rounded even if the rounding after the four arithmetic operations is valid .
next,
A = A * 1
PRINT USING "#. ############"; A
And running continuously,
A = 1.123456789000

Is displayed and it can be confirmed that rounding has been performed by four arithmetic operations.
Here, the following table shows a summary of operation examples in the vicinity of the rounding threshold.

Kapitel: I. Basic Operation

1-5 Calculation in CAL- or RUN-Mode Seite 13

Table. Example of Calculation results when Rounding is enabled after four Arithmetic
Operations (FX-870P / VX-4)

Assigned value to A A value by A = A * 1 after MODE10 Rounding

1.123456788 049 1.123456788 000 Round down

1.123456788 050 1.123456788 050
No rounding

1.123456788 949 1.123456788 949

1.123456788 950 1.12345678 9000 Round up

Here, in order to clarify the effect of rounding up and avoid confusion, the value of the 9th decimal place of
the numerical value substituted before the calculation of the table is 8.
Also, whether the FX-870P / VX-4 is enabled or disabled can be checked by the value of RNDFL (old name:
MODED, address: & H1133) in the system area. If the value of this address is 0, the rounding process at the
time of arithmetic operation is valid, and if it is 1, the rounding process at the time of arithmetic operation is
invalid. In particular,

DEFSEG = 0
PEEK (& H1133)

You can check the contents. However, the command DEFSEG = 0 is not necessary unless a DEFSEG instruction
has been issued.
For details on the format of numeric variables, refer to A-2. BCD floating-point format and internal format in
12. FX-870P / VX-4 Internal Information.
Finally, the successor FX-890P / Z-1 has a different rounding method,

• If the 11-13 digit number is less than 007,
• Round up when the 11 to 13 digit number is 990 or more

And the rounding conditions are getting stricter. The rounding conditions for models prior to FX-870P / VX-4
are unknown because the authors do not have them.

(note)
In the case of Sharp's pocket computers, PC-E500 series models such as PC-E650 support double precision and
can store 20 digits with 24 digits of computation (basic is single-precision and almost the same as conventional
models), but most The model is 12 digits for computation and 10 digits for storage. The 11th and 12th digits
are rounded, and the last byte of the 8 bytes stored in the memory as a variable value is 0, and the information
is damaged (PC-1350 and PC-G850V have been confirmed to work). For this reason, Sharp's pocket computers
are designed to easily accumulate errors when performing complex calculations. This is in contrast to Casio's
Pokémon, which basically stores 13 digits of precision as described above.

Therefore, Casio's pocket computer seems to be superior to Sharp in terms of calculation accuracy.

Kapitel: I. Basic Operation

1-5 Calculation in CAL- or RUN-Mode Seite 14

use ENG

Angle Modes

Kapitel: I. Basic Operation

1-6 Display Seite 15

1-6 Display

Display 4 Lines and virtuell Display 8 Lines

Selftest:

(BASIC) SYSTEM* / ENTER

Kapitel: I. Basic Operation

1-6 Display Seite 16

only an Example for a Char-Set with 5x7 Pixel

Kapitel: I. Basic Operation

1-6 Display Seite 17

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 18

1-7 Accessories for the FX-870P / VX-4

Kyoros Room Blog:

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 19

FP-40:

FA-6:

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 20

MD-110

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 21

FA-8:

RS232C:

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 22

RP-8 = 8Kb, RP-33 = 32Kb RAM Speicher:

Kapitel: I. Basic Operation

1-7 Accessories for the FX-870P / VX-4 Seite 23

USB-Interface-Kabel for FX-850P to VX-4 (Inet 2020)

Kapitel: I. Basic Operation

1-8 Romaji – Tabellen (Shift CAPS & …) Seite 24

1-8 Romaji – Tabellen (Shift CAPS & …)

Kapitel: I. Basic Operation

1-8 Romaji – Tabellen (Shift CAPS & …) Seite 25

Kapitel: II. BASIC - Referenz

Table of Contents Seite 26

Table of Contents

1. How to enter BASIC mode
2. Grammar overview
3. Manual commands
4. Program commands
5 File Descriptor
6. BASIC Built-in Functions
7. BASIC Logical Operations
8. Arithmetic priority
9. BASIC Error messages
10. Character code table

Kapitel: II. BASIC - Referenz

Table of Contents Seite 27

List of Manual Commands

LIST, LLIST RENUM NEW PASS RUN

SAVE LOAD MERGE VERIFY EDIT

DELETE SYSTEM CONT LIST # SAVE #

LOAD # MERGE # NEW #

Note that the commands for VERIFY, SAVE #, LOAD #, MERGE #, and NEW # have been deleted

on FX-890P and Z-1.

List of Program Commands

ANGLE BEEP CLEAR DIM ERASE

END DATA READ RESTORE
FOR ~ TO ~

[STEP] ~ NEXT

GOTO GOSUB RETURN
IF ～ THEN ～

ELSE
INPUT

LET ON-GOTO ON-GOSUB PRINT, LPRINT PRINT USING

REM SET STOP READ # WRITE #

RESTORE # CLOSE CLS DEFSEG LOCATE

DEFCHR $ POKE TRON TROFF VARLIST

INPUT # LINE INPUT # ON ERROR GOTO OPEN PRINT #

RESUME FORMAT FILES KILL NAME

CHAIN STAT STAT CLEAR MODE

There are no graphic-related commands such as LINE and DRAW, CALL, SWAP, WAIT, REV,

NORM, OUT, and OUTPORT supported by FX-890P and Z-1GR.

List of Built-in Functions

SIN COS TAN ASN ACS

ATN HYPSIN HYPCOS HYPTAN HYPASN

HYPACS HYPATN SQR CUR ^

EXP LOG LN ABS INT

FRAC FIX SGN ROUND (RAN #

π, PI DEG (REC (POL (FACT

NPR(NCR (FRE DEGR DMS

CNT

SUMX, SUMY,

SUMX2, SUMY2,

SUMXY

MEANX,

MEANY

SDX, SDY,

SDXN, SDNY
LRA, LRB

COR EOX, EOY & H DMS $ (LEN (

MID $ (CHR $ (LEFT $ (RIGHT $ (STR $ (

VAL (HEX $ (ASC (VALF (EOF

Kapitel: II. BASIC - Referenz

Table of Contents Seite 28

ERL ERR PEEK DSKF TAB

INPUT $ INKEY $

The functions INP, INPORT, POINT, and TIMER supported by FX-890P and Z-1GR are not

available.

Logical Operations

NOT AND OR XOR ¥

MOD

Although not described in the BASIC manual, it is described in the operation text, but logical

operators are provided.

Error Message List

OM error SN error ST error TC error BV error

NR error RW error BF error BN error NF error

LB error FL error OV error MA error DD error

BS error FC error UL error TM error RE error

PR error DA error FO error NX error GS error

FM error OP error AM error FR error PO error

DF error

In FX-890P and Z-1GR, LB error has been deleted.

Kapitel: II. BASIC - Referenz

The FX-850P, FX-870P, FX-880P, FX-890P,

VX-1 to 4, Z-1 and PB-1000 Series Seite 29

The FX-850P, FX-870P, FX-880P, FX-890P,

VX-1 to 4, Z-1 and PB-1000 Series

These machines have a new implementation of BASIC, called JIS Standard BASIC by Casio. The PB-

1000 has a RAM file system while the FX and VX systems retain the ten program areas of the earlier

machines. The internal encoding is ASCII but the BASIC keywords and line numbers are encoded

differently (line numbers can now reach up to 65535, not only 9999.) The extended character sets

differ between the PB-1000 and the other machines of the series. The PB-1000 shares the PB-700

character set with special graphics while the FX, VX and Z systems show math and science symbols

instead. The Z-1 and its sibling FX-890P lack the tape interface.

All machines except the PB-1000 connect to the FA-6 interface. This interface offers a higher

transmission speed of 1200 bits per second. The data block format is a variant of the PB-700 scheme

but the encoding of BASIC programs is different. It is possible to load a file saved with SAVE,A on a

PB-700 into the FX-850P, and the other way round is possible, too. You have to restrict the speed to

300 bits per second (SAVE"(S)" and LOAD"(S)" on the FX-850P.) I could only partly test the tape

interface with the VX-1 or FX-870P because I could only write but not read programs or data through

the FA-6 interface with these machines.

The FX-850P/FX-880P systems can read tapes from the PB-100 series with special commands

(PBLOAD, PBGET).

The PB-1000 has a similar connector but mechanical and electrical differences inhibit the use of the

FA-6. The PB-1000 uses the FA-7 interface which offers even higher transfer rates (up to 2400 bits per

second, selectable by DIP switch on the interface.) The Z-1 and FX-890P no longer support tapes but

can still be used with the bas850 source text translator and a serial or USB interface.

Kapitel: II. BASIC - Referenz

2-1 The BASIC Token Seite 30

2-1 The BASIC Token

Kapitel: II. BASIC - Referenz

2-2 How to enter BASIC Mode Seite 31

2-2 How to enter BASIC Mode

① Press the MODE key and '1' in succession to enter BASIC mode. Below the LCD screen is a table

showing the combinations of the MODE button and numeric keys.

② In BASIC mode, pressing the SHIFT key (red 'S' key) and the numeric key in succession selects

the program number of the number that was pressed and becomes the target for editing and

execution.

③ In CAL mode, if you press the SHIFT key (red 'S' key) and the number key in succession, if there

is a program in the program number of the pressed number, that program is executed.

2-3 Grammar Overview

Here, basic knowledge of BASIC is omitted. The features of FX-870P / VX-4 BASIC are as follows.

• There are 10 program areas P0 to P9 that can be stored. Therefore, there is no problem even if

each program has the same line number. However, there are no scoping rules for variables, and

all are global variables. This is a major feature of CASIO BASIC.

• There is a data bank area (file area) F0 to F9, and BASIC allows input / output via WRITE #,

READ #, etc. Therefore, the calculation results can be output to a file and saved.

• In Sharp, the label that was implemented in the initial pocket computer is not implemented, and

it is specified by the line number or program number. Casio's last Pokémon FX-890P / Z-1 was

the first label to be mounted.

• Sharp's pocket computer BASIC can execute machine language with the CALL instruction,

where as Casio cannot execute Machine language except for a few models such as PB-1000

and FX-890P / Z-1. FX-870P / VX-4 does not officially support machine language execution,

but can execute machine language routines with the hidden instruction MODE110 (execution

start address).

2-2-1 Structure of sentence Each sentence (line) is composed as follows.

[line number] Command (Instruction) Operand [: Command (Instruction) Operand; [: ･ ･ ･]]]

The Line-Numbers can be 1-65535. The Line-Length was 255 Chjars.

A sentence consists of a command and an operand, separated by a colon (:). If a line number is added

at the beginning of the line, it is interpreted as a program and stored in memory. If there is no line

number, it is executed directly after pressing the EXE button.

2-2-2 Variables Variables are classified into four types depending on whether the data type is

numeric or string, single variable or array variable.

Table 2-1. Classification of BASIC variables

 Single variable Array variable

Data type
Numeric Numeric variable Array numeric variables

Character (column) Character variable Array character variable

Kapitel: II. BASIC - Referenz

2-3 Grammar Overview Seite 32

The naming method for variable names and array names is as follows.

①
Must not contain reserved words from the beginning. Conversely, reserved words are a memory-

saving specification that allows delimiters such as white space to be omitted.

②
The first character string must be one of uppercase letters ('A'-'Z'), lowercase letters ('a'-'z'), or

kana (ASCII code: & HA6- & HDF).

③
Except for the beginning, it must consist of uppercase letters, lowercase letters, kana, and numbers

('0'-'9').

④
The length of the string must be no more than 255 characters. The length of the standart string

A$ to Z$ must be no more than 30 characters.

Handling of arrays is as follows.

① An array is first declared with a DIM statement.

② The array subscript is an integer greater than or equal to 0, and the fractional part is truncated.

③ The dimensions of the array are written in the CASIO manual and the range allowed by the

internal stack, but in reality, 255 dimensions is the maximum in terms of work area representation.

(Note 2)

④ The maximum value of the subscript is the range allowed by the storage capacity.

The used memory size of the variable is listed in (Note 1) at the end of this chapter.

Notes on variables and arrays are as follows.

① Variables and arrays are commonly used for all programs (P0-P9).

② Variables are reserved for their first use.

③ An array variable cannot be used unless an array declaration is made in the DIM statement.

④ Character variables are stored in the character data area specified by the CLEAR statement.

⑤ Uppercase and lowercase letters are recognized as different characters. For example, A and a

are separate variables.

⑥ Numeric variables, character variables, array numeric variables, and array character

variables with the same variable name can exist simultaneously. For example, DIM A (10) and

A $ (10) can be used while using A and A$.

Care must be taken because these can cause bugs. VARLIST is a useful command for debugging

because it lists the names and types of variables that have substance when executing programs.

2-2-3 Valid only in a comparison operator program. The result is -1 if true, 0 if false. Since

comparison of character strings is complicated, Table 2-2 shows the operation of comparison operators

depending on the data type.

Table 2-2. Comparison operator behavior

Data

type
Action

Example of

use
result

Numeric Compare numerical values.

PRINT 123> 45
-1

(true)

PRINT 123 <45
0

(false)

Kapitel: II. BASIC - Referenz

2-3 Grammar Overview Seite 33

String

The character code sizes are compared in order from the

beginning.

PRINT "ABC"

<"ABD"

-1

(true)

PRINT "DEF"

<"ABC"

0

(false)

When the character string is the same from the beginning and

one is included in the other, the shorter character string is

considered smaller.

PRINT

"ABC">

"ABCD"

0

(false)

2-2-4 Character operators Only + (plus) of the four arithmetic operations are valid for string

operations. + Performs the operation of combining left and right strings, and the result must be within

255 characters. For example, "A" + "B" results in "AB".

(Note 1) Variable memory usage Numeric variables and character variables are allocated to memory

when they are used for the first time. The bytes used at that time are as follows.

Numeric

variable:

(Variable name length + 12) bytes are secured from the work area.

Character

variable:

(Variable name length + 4) bytes are secured from the work area, and (String length +

1) bytes are secured from the character area.

Array variables are allocated in memory when they are defined with a DIM statement. The bytes used

at that time are as follows.

Array

numeric

variables:

((Variable name length + 4) + (array size * 8) + dimension * 2 + 1) bytes are secured

from the work area.

Array

character

variable:

(Variable name length + 4) bytes are allocated from the work area, and ((array size) +

dimension * 2 + 1) bytes are allocated from the character area.

When a character string is assigned, the character area is used for the length of the

character string.

Refer to “2-3. Variable data storage format” in “12. FX-870P / VX-4 internal information” for details

of the variable storage method.

(Note 2) Maximum number of dimensions of array variable

The dimension of the array variable is stored in the +1 term in the used memory size of both array

variables in (Note 1), that is, 1 byte. Therefore, the maximum number of dimensions of an array

variable is 255. However,

• It is impossible to define 255 dimensions because of the restriction that must be declared in a

DIM statement with 255 characters per line.

• In principle, 255 dimensions can be realized by directly manipulating the BASIC work area

using PEEK and POKE statements. However, in order to declare DIM A $ (1,1,1, ..., 1), a huge

memory of 2 255す る に は 5.8E + 78 bytes (in short, 255 bits) is required. .

• Declaration equivalent to DIM A $ (0,0,0, ..., 0) can be realized if the memory usage is taken

into consideration. However, the number of elements in an array variable is 1, the substance is

just a variable, and the declaration itself is meaningless. In addition, since a 255-dimensional

index is calculated for accessing variables, the loss is large in terms of calculation speed.

However, FX-870P / VX-4 can declare 0 (though meaningless) as the maximum DIM index.

Kapitel: II. BASIC - Referenz

2-4 BASIC Manual Commands Seite 34

2-4 BASIC Manual Commands

• Manual commands cannot be executed in the program.

• {} Indicates one of them. However, when executing with BASIC, {} itself is not entered.

• [] Can be omitted. However, when executing in BASIC, [] itself is not input.

• Commands marked with * can also be used in CAL mode.

Table 3. Manual Commands

Command

Name
Format Function Example of Use

LIST

LLIST

{LIST, LLIST}

{

• [Start

number]

[-[End

number]]

• .

• ALL

}

Display all or part of the program

contents on the screen. When

LIST is LLIST, output from the

screen is output to the printer.

1. LIST: 'Display from the

top

2. LIST 30: 'Display line

number 30

3. LIST 20-80: 'Display line

numbers 20-80

4. LIST 20-: 'Display line

number 20 and later

5. LIST -80: 'Displays from

the first line to line number

80

6. LIST.: 'Display last line

processed

7. LIST ALL: 'Display

programs in all program

areas

RENUM RENUM [new

line number] [,

[old line

number] [,

incremental]]

Renumber lines at regular

intervals. The default values for

the new line number, old line

number, and increment are 10, the

first line number, and 10,

respectively.

1. RENUM 100,10,10: 'Set

line number 10 as new line

number 100, and then

renumber line numbers at

intervals of 10

NEW NEW [ALL] Erase the program in the currently

specified program area. When

ALL is specified, all programs in

the program area are deleted.

8. NEW: 'Erase program in

specified program area

9. NEW ALL: 'Erase

programs in all program

areas (P0-P9)

*

PASS

PASS

"Password"

Sets or cancels all program areas

and all file areas.

10. PASS "CASIO": 'When

executed first, operations

such as LIST and EDIT are

disabled for each area. It is

canceled by executing

PASS "CASIO" again.

RUN RUN [line

number]

Execute the program from the

first line or specified line.

11. RUN: 'Run the program

from the first line

12. RUN1000: 'Run program

from line number 1000

Kapitel: II. BASIC - Referenz

2-4 BASIC Manual Commands Seite 35

SAVE SAVE [ALL] "

File descriptor "

[, A]

Outputs the program to the file

specified by the file descriptor.

The target program is the

program in the currently specified

program area, or the program in

all program areas when ALL is

specified. However, ALL-

designated output destinations are

limited to cassette tapes. When ",

A" is added, the output is ASCII.

The ALL specification is not

available for FX-890P and Z-1

BASIC.

13. SAVE "0: DEMO1.BAS":

'Output the program with

the file name

"DEMO1.BAS" in the

floppy disk.

14. SAVE "CAS0: (S)

DEMO2.BAS", A: 'Output

the program in ASCII

format with the file name

"DEMO1.BAS" at normal

phase and slow transfer

speed (300bps) on the

cassette tape.

15. SAVEALL "CAS1: (F)

P09": 'Outputs the program

in the entire program area

with the file name "P09"

with reverse phase to

cassette tape and high

transfer speed (1200bps)

LOAD LOAD [ALL] "

file descriptor "

[, A]

Reads the program of the file

specified by the file descriptor.

The reading destination is the

currently specified program area,

or the entire program area when

ALL is specified. However, ALL

specification is limited to LOAD

from cassette tape. When ", A" is

added, ASCII format program is

read. The ALL specification is

not available for FX-890P and Z-

1 BASIC.

1. LOAD "5, E, 8,1, N, N, N,

B, N": 'Load the program

from RS-232C. Refer to

the file descriptor for the

RS-232C settings.

MERGE MERGE " file

descriptor "

The program of the file specified

by the file descriptor is mixed

with the currently specified

program area.

16. MERGE "0: TEST.BAS":

'Read the program of the

file "TEST.BAS" in the

floppy disk and mix.

VERIFY VERIFY " file

descriptor "

Check the file recorded in the

cassette file. In FX-890P, Z-1,

this command has been deleted.

17. VERIFY "CAS0: TEST":

'Verify that the file

"TEST" on the cassette

tape is recorded correctly.

EDIT EDIT {

• [line

number]

• .

}

Displays the program in the

currently specified program area

and enters edit mode.

18. EDIT: 'Start editing from

the first line of the

program

19. EDIT 30: 'Edit line number

30

20. EDIT .: 'Edit the last line

handled

DELETE DELETE

[starting line

number] [-

Delete part of the program by line

number. If there is no argument,

SN Error occurs.

21. DELETE 50: 'Delete line

number 50

Kapitel: II. BASIC - Referenz

2-4 BASIC Manual Commands Seite 36

[ending line

number]]

22. DELETE 20-80: 'Do line

numbers 20-80

23. DELETE 20-: 'Delete line

number 20 and later

24. DELETE -80: 'Delete line

number 80 from the first

line

*

SYSTEM

SYSTEM [*]

Without arguments, printer (PR)

ON / OFF setting, trace mode

(TR) ON / OFF setting, CLEAR

statement setting, text area free

capacity (FREE), variable area

(V) free area capacity, characters

Displays the free capacity ($) of

the area.

Enter the test mode with the

argument "*" as a hidden

command (Reference (1)).

1. SYSTEM: Displays the

BASIC system settings

2. SYSTEM *: Test mode

*

CONT

CONT

Resume execution of a program

that was stopped with the STOP

statement or STOP key.

1. CONT

*

LIST #

LIST #

Displays all text data written in

the data bank area "F0". When

LIST is LLIST, output from the

screen is output to the printer.

1. LIST #

*

SAVE #

SAVE # " File

descriptor "

Outputs the memo data written in

the data bank area “F0” to the file

specified by the file descriptor.

25. SAVE # "0: TEST": 'F0

contents are output to

floppy with file name

"TEST"

*

LOAD #

LOAD # " File

descriptor "

Read the contents of the file

specified by the file descriptor

into the data bank area “F0”.

26. LOAD # "0: TEST": Load

the contents of the file

"TEST" on the floppy disk

to 'F0

*

MERGE #

MERGE # " file

descriptor "

Adds the contents of the file

specified by the file descriptor to

the memo data in the data bank

area "F0".

1. MERGE # "0: TEST": '

*

NEW #

NEW #

All the memo data written in the

data bank area “F0” is deleted.

1. NEW #

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 37

2-5 BASIC Program Commands

• {} Indicates one of them. {} Itself is not written.

• [] Can be omitted. However, [] itself is not written. If there are "..." in [], it means that it can be

recursively defined in [].

• | Means "or" and is one of the identifiers on both sides of |.

• Italicized words are identifiers that are not reserved words, and are constants, variables, and

expressions.

Table 4. Program Commands

Command

Name
Format Function Example of Use

ANGLE ANGLE formula Specify the angle unit. 1. ANGLE 0: 'DEG: degree

2. ANGLE 1: 'RAD:

Radian

3. ANGLE 2: 'GRA: Grado

4. ANGLE A: Change

angle unit according to

'A value

* 360 deg = 2 * PI rad =

400 gra

BEEP BEEP {[0] | 1} Sound the buzzer. 1. BEEP: 'Sound with bass

2. BEEP 0: 'Sound with

bass

3. BEEP 1:

CLEAR CLEAR [variable area size]

[, work area size]

Clear all variables and

allocate memory area

according to the

arguments. The work

area refers to the entire

work area of BASIC

used for I / O buffers,

character operation

work, FOR stack,

GOSUB stack, numeric

data, variable table, and

character variable data

(machine language is

also used in PB-1000).

The variable area

indicates the data

storage area of the last

character variable

(including array

character variables).

Therefore, the

variable area size

must be smaller than

1. CLEAR: 'Clear variable

2. CLEAR 1024: 'After

clearing the variable,

1024 bytes are reserved

for the variable area.

3. CLEAR 1024,2048:

'After clearing the

variable, 1024 bytes and

2048 bytes are secured in

the variable area and

work area, respectively.

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 38

the work area size,

and a certain area

must be secured in

addition to the

variable area.

The default variable

area and work area

sizes are 512,1536

when VX-4 (RAM:

8KB) and RP-8 are

added (RAM: 16KB),

and 1024, 8192

otherwise.

The size of the current

work area, variable

area, and free space can

be determined by the

SYSTEM command

and the built-in

function FRE .

DIM DIM array name

(maximum subscript [,

maximum subscript ...)

Declaring array

variables. However,

subscript starts from 0.

1. DIM A (5): 'Declaration

of numeric variable of

one-dimensional array

2. DIM B $ (2,5):

'Declaration of two-

dimensional array

character variable

ERASE ERASE array-name [,

array-name]

Erase the specified

array variable by

variable name.

1. ERASE A, B: 'Erasing

array variables A and B.

END END Terminate the program.

However, even if the

program does not have

an END statement, the

program ends when it

reaches the end of the

program.

DATA DATA data 1 [, data 2 ...] Used to embed data

read by READ

statement in the

program.

1. DATA 10,20,30

READ READ variable 1 [,

variable 2 ...]

Store the data prepared

by the DATA statement

in a variable.

1. READ A, B, C

RESTORE RESTORE [line number] Specify the start line of

DATA statement to be

read by READ

statement.

1. RESTORE: 'Specify the

start line of the data

statement

2. RESTORE 100: 'Read

from the data of line

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 39

number 100 with READ

statement

FOR ~ TO ~

STEP

･ ･ ･

NEXT

FOR variable = initial

value TO final value [STEP

increment value]

･ ･ ･

NEXT [variable] (formula)

Repeat the FOR and

NEXT statements from

the initial value until

the final value is not

exceeded while adding

the increment value (1

if there is no STEP or

less).

1. FOR I = 1 TO 10

SUM = SUM + A (I)

NEXT I

GOTO GOTO {

• Branch precedence

number

• #Program area

number

}

Jumps unconditionally

to the specified branch

precedence number or

the first line of the

program area.

1. GOTO 80: 'Jump to line

number 80

2. GOTO # 7: 'Jump to the

first line of program area

7

GOSUB GOSUB {

• Branch precedence

number

• #Program area

number

}

Calls a subroutine

starting from the

specified branch

precedence number or

the first line of the

program area. Even if

the program area

changes, variable

definitions and their

values are inherited.

1. GOSUB 100

2. GOUB # 5

RETURN RETURN [{

• Branch precedence

number

• #Program area

number

}]

Return to the first line

of the branch preceding

number and program

area number specified

from the subroutine.

When the return

destination is omitted, it

returns to the next

sentence after the one

that called the

subroutine with a

GOSUB statement.

* To make the program

easier to read, it is

better not to specify the

return destination.

1. RETURN

2. RETURN 20

3. RETURN # 1

IF ~ {

• THEN

• GOTO

} ELSE

IF conditional statement {

• THEN {

o Sentence [:

sentence]

o Branch

precedence

number

When the conditional

statement is true, the

statement below THEN

is executed or jumps to

the destination

specified by the GOTO

statement.

1. IF A> = 100 THEN 50

ELSE 100

2. IF B = 0 THEN X = 10

ELSE Y = B

3. IF C = 1 THEN GOSUB

500: 'GOSUB can be

used in the statement

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 40

o #Program

area number

}

• GOTO {

o Branch

precedence

number

o #Program

area number

}

} [ELSE {

• Statement [:

execute]

• Branch precedence

number

• #Program area

number

}]

If the conditional

expression is false and

there is a statement

below ELSE, the

statement below ELSE

is executed or jumped

to the jump destination.

4. IF D <> 50 THEN # 9

INPUT INPUT ["message sentence

1" {; |,}] variable 1 [[,

"message sentence 2" {; |,}]

variable 2 ...]

Input data from the

keyboard to the

specified variable. If a

message text is given as

an argument before the

variable, the data can

be entered after the

message text is

displayed. When the

comma after the

message text is ";", "?"

Is added to the message

text, and when it is ","

nothing is added and

the input operation

starts.

1. INPUT A, B, C

2. INPUT "X ="; X

3. INPUT "A"; A, "B"; B,

"C"; C

LET LET variable = {assigned

value | expression}

Assign the assignment

value on the right side

or the calculation result

of the expression to the

variable on the left side.

The assignment

statement can omit LET

itself.

1. LET A = 10

2. A $ = "CASIO"

3. X = Y * Z / 2

ON-GOTO ON Formula GOTO {

• Branch precedence

number

• #Program area

number

} [, {

• Branch precedence

number

ON Jumps to the jump

destination

corresponding to the

value of the formula

below. The branch

destination is specified

when the mathematical

formula is 1, 2, 3, ...

from the top. When the

1. ON A GOTO 100,200,,

300: Jumps to line

number 300 when 'A is 3

and does not jump when

4

2. ON X + Y GOTO 100, #

6, # 7

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 41

• #Program area

number

} ･ ･ ･]

branch destination is

not defined, the

command immediately

after this instruction is

executed without

jumping.

ON-GOSUB ON Formula GOSUB {

• Branch precedence

number

• #Program area

number

} [, {

• Branch precedence

number

• #Program area

number

} ･ ･ ･]

Calls a subroutine

corresponding to the

value of the expression

below ON. Subroutines

are specified when the

formula is 1, 2, 3, ...

from the top. When no

subroutine is defined,

nothing is called and

the command

immediately after this

command is executed.

1. ON A GOSUB 100,200,,

300: When A is 3, do not

GOSUB, and when 4,

call the subroutine of line

number 300

2. ON X + Y GOSUB 100,

6, # 7

PRINT

LPRINT

[PRINT | LPRINT] [{

• TAB (tab

specification)

• Formula

• String

• variable

}] [{; |,} [{

• TAB (tab

specification)

• Formula

• String

• variable

}] ･ ･ ･]

Displays output

elements such as

formulas, strings, and

variable values. If

PRINT is set to

LPRINT, the output is

changed from the

screen to the printer.

1. PRINT: 'Do line feed

only

2. PRINT A, B, C

3. PRINT "X ="; X;: 'Add a

semicolon ";" at the end

to avoid line breaks

4. PRINT TAB (5);

"CASIO": 'Output 5

blanks and then the

string "CASIO"

PRINT

USING

PRINT USING "format

specification"; output

element

Display output

elements according to

format specification.

USING and below are

also applicable to

LPRINT and PRINT #

.

1. PRINT USING "& &";

A $: 'A $ displays only

the length of & &.

2. PRINT USING "###.

##"; X: '###. ## displays

a numeric value, and

invalid digits in the

integer part display a

blank. # Includes a sign

and a numeric value. If

the specified format

cannot be displayed, it

ignores the format

specification and

displays a numeric value

with a leading%.

REM {REM | '} Annotation Represents an

annotation (comment)

1. REM program for matrix

calculation

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 42

and does nothing.

Apostrophe "'" is an

abbreviation for REM.

2. 'This is comment

SET SET {

• F {one character of

0-9}

• E {one character of

0-9}

• N

}

Specify the output

format of numeric data.

F specification specifies

the number of digits

after the decimal point,

E specification

specifies the number of

significant digits, and N

cancels the

specification.

1. SET F3: '

STOP STOP Pause program

execution. The program

resumes from where it

was interrupted by the

manual command

CONT.

READ # READ # Variable 1 [,

Variable 2…

Reads the memo data

written in the data bank

area into a variable.

The default data bank

area is “F0”, but can be

changed with the

RESTORE #

statement.

1. READ # A $, X

WRITE # WRITE # [Data 1] [, Data 2

･ ･ ･]

Delete or rewrite data

in the data bank area. A

line feed is output after

each data is output. The

default data bank area

is “F0”, but can be

changed with the

RESTORE #

statement.

* An FC error occurs

when attempting to

execute as a manual

command.

When the WRITE #

statement is executed

by the program, the

data bank area is

cleared, but it is not

cleared by the

subsequent WRITE #

statement, and

additional writing is

performed.

1. WRITE #: 'Delete

2. WRITE # "CASIO Z-

1GR": 'rewrite

3. WRITE # A $, B:

'Output of character

variable A and numeric

variable B

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 43

RESTORE # RESTORE # [("file area

name")] ["search string"] [,

{0 | 1} [, GOTO {

• Branch precedence

number

• #Program area

number

}]]

Switch the file area for

READ # and WRITE

. In addition, the

“search character

string” in the

designated file area is

searched, and the data

read first by the READ

statement is changed

to start from the search

character string.

The third argument 0 or

1 specifies the data

reading start position. 0

is the same as when

nothing is specified,

and the data including

the search character

string at the head is set

as the reading start

position. When 1, the

search character string

is searched and read

with READ # from the

beginning of the line

containing the

character.

When "search string" is

not found, if there is a

GOTO option, jump to

the specified jump

destination. If there is

no GOTO option, a

DA error will occur.

1. RESTORE # ("F1"):

'Specify the target file

area for READ # and

WRITE # to F1

2. RESTORE # "START":

'"START" position is the

data reading start

position

3. RESTORE # ("F1")

"START": '

4. RESTORE #

"ORANGE", 0: Same as'

RESTORE "ORANGE",

the first data read with

READ # is "ORANGE".

5. RESTORE #

"ORANGE", 1: 'The

beginning of the line

containing "ORANGE"

is the position of the data

to be read first.

CLOSE CLOSE Close the current file

and stop using the I / O

buffer.

CLS CLS Clear display screen.

DEFSEG DEFSEG = segment value Sets the base address

when executing the

PEEK function or

POKE statement

(maybe MODE110

statement).

1. DEFSEG = 0: 'BANK1

RAM (default value). &

H1000 is the same as the

x86 CPU segment

register, and DEFSEG *

16 is the base address.

2. DEFSEG = & H1000:

'The base address is the

first (& H38000) of the

30-pin I / 0 area in the I /

O space of BANK3.

Reading and writing of

& H38000 to & H38007

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 44

can be executed with

PEEK and POKE at

addresses 0 to 7. &

H1000 and above are all

the same.

LOCATE LOCATE X coordinate, Y

coordinate

Move the cursor to the

specified position on

the virtual screen.

1. LOCATE 10,0

DEFCHR $ DEFCHR $ (code) =

"character form"

Sets the display pattern

according to the

character form of the

specified code. You can

specify 4 codes from &

HFC (252) to & HFF

(255). The character

form is a 12-character

hexadecimal code, and

two characters from the

beginning are assigned

from left to right.

1. DEFCHR $ (252) =

"0F0F0F0F0F0F": 'The

lower half is a black

pattern

2. DEFCHR $ (252) =

"0F0F0F000000": 'Black

pattern in the lower left

half

POKE POKE address, data Write data to the

address specified by the

formula. The actual

address is the base

address specified in the

DEFSEG statement

plus the address of the

PEEK statement

argument.

1. POKE & H7000,0

TRON TRON Set the BASIC program

to trace mode.

TROFF TROFF Release the BASIC

program from trace

mode.

VARLIST VARLIST Displays all variable

names and array names

that currently exist.

INPUT # INPUT # file number,

variable name 1 [, variable

2 ...

Reads data from the

sequential file with the

file number declared in

the OPEN statement.

1. INPUT # 1, A: '

LINE

INPUT #

LINE INPUT # file

number, character variable

name 1

Reads one line of

character string data

from the sequential file

with the file number

declared in the OPEN

statement.

1. LINE INPUT # 1, A $: '

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 45

ON ERROR

GOTO

ON ERROR GOTO branch

precedence number

Specify the branch

destination when an

error occurs.

OPEN OPEN " file descriptor "

[FOR {INPUT | OUTPUT |

APPEND} AS [#] file

number]

Open the file. INPUT,

OUTPUT, and

APPEND specify the

input, output, and

additional write modes,

respectively.

1. OPEN "DATA1.DAT"

FOR INPUT AS # 1: '

PRINT # PRINT # file number, [{

• TAB (tab

specification)

• Formula

• String

• variable

}] [{; |,} [{

• TAB (tab

specification)

• Formula

• String

• variable

}] ･ ･ ･]

Outputs output

elements such as

mathematical

expressions, character

strings, and variable

values to the sequential

file with the file

number declared in the

OPEN statement.

1. PRINT # 1, A $

RESUME RESUME [{NEXT | Return

line number}]

Return from error

handling routine. If

NEXT or return

destination is omitted,

return to the statement

where the error

occurred.

1. RESUME NEXT:

'Return to the statement

following the statement

where the error occurred

2. RESUME 100

FORMAT FORMAT Format the floppy disk.

There is no / 6, / 9, / M

option to specify the

floppy capacity like

FX-890, Z-1.

FILES FILES [" file descriptor "] Displays the file name,

attribute, used capacity,

etc. specified by the file

descriptor in the floppy

disk. * ,? wildcards can

be used for file

descriptors.

1. FILES

2. FILES "0: TEST.DAT"

3. FILES "0: *. DAT"

KILL KILL " File descriptor "

Delete the file specified

by the file descriptor in

the floppy disk. * ,?

wildcards can be used

for file descriptors.

1. KILL "0: TEST.DAT"

2. KILL "0: *. DAT"

NAME NAME "old file descriptor

" AS "new file descriptor"

The file specified by

the old file descriptor

on the floppy disk is

1. NAME "0: TEST.BAS"

AS "0: NEW.BAS"

Kapitel: II. BASIC - Referenz

2-5 BASIC Program Commands Seite 46

changed to the file

name of the new file

descriptor.

CHAIN CHAIN " File descriptor " Reads and executes the

program specified by

the file descriptor in the

current program area.

1. CHAIN "CAS0: TEST"

2. CHAIN "0: TEST.BAS"

STAT STAT X data [, Y data] [;

Frequency]

Enter statistical data. 1. STAT 1,3; 10

STAT

CLEAR

STAT CLEAR Clear (initialize) the

statistical processing

function.

MODE MODE formula Hidden instructions not

in the CASIO manual.

Refer to the usage

examples for arguments

and grammar. If the

argument is out of

range, it will be "BS

error".

1. MODE 10: 'Perform

rounding after four

arithmetic operations.

2. MODE 11: 'Do not

perform rounding after

the four arithmetic

operations.

3. MODE110 (Addr): 'Call

the machine language at

Addr 's address.

4. MODE {200 | 201} (Tr ,

Sf , Sc): 'Floppy disk

sector READ, WRITE

command. Tr is 0-79 for

truck, Sf is 0-1 for

surface, Sc is 1-8 for

sector. It is unknown

whether 200 or 201 of

the first argument is

READ.

5. MODE A: The above

processing is executed

according to the value of

'A. However, with A =

110, 200, 201, the

following argument is

required, so "SN error".

Kapitel: II. BASIC - Referenz

2-6 File Descriptor Seite 47

2-6 File Descriptor

For the FX-870P and VX-4, three file descriptors can be specified as devices: Floppy disk,

Cassette tape, and RS-232C.

For a floppy, it is "0: file name".

In the case of cassette tape, it is represented by "CAS {0 | 1} ({F | S}): file name", and the

numbers are phase designation when reading from MT: 0: normal phase, 1: reverse phase, in

parentheses The alphabetical characters are F: 1200bps and S: 300bps in transfer rate

specification, and are described as "CAS0: (F) TEST1".

In the case of RS-232C, “COM0: communication parameter ” (for example, “COM0: 6, E, 8, 1,

N, N, N, B, N”).

Communication parameters

Each of the nine settings is represented by one character, and is described by a character string

with a comma inserted between each character:

The first parameter is the communication speed setting, which is 1,2,3, ..., 7. If this is n , the

communication speed is set to 75 * 2 ^ n bps. Specifically:

1: 150 bps

2: 300 bps

3: 600 bps

4: 1200 bps

5: 2400 bps

6: 4800 bps

7: 9600 bps

The second parameter is the parity setting. One of the three characters E, O, and N represents

even parity, odd parity, and non-parity, respectively.

The third parameter is the data length setting. The data length is 7 bits or 8 bits in either of 7

and 8 characters.

The fourth parameter is the stop bit setting. Stop bit is 1 bit or 2 bit in either of 1 or 2

characters.

The fifth parameter is the CTS setting. CTS represents ON or OFF for either of the two

characters C and N. CTS is an abbreviation of “Clear To Send”. DCE (Data Circuit terminating

Equipment; here, the other party) informs DTE (Data Terminal Equipment; here the Pokécon)

that it is ready to receive. In the 3-wire system with audio mini plugs, only RxD, TxD, and SG

(signal ground) signal lines are required, so CTS, DSR, and CD must be turned off.

The sixth parameter is the DSR setting. DSR is ON or OFF for either of the two characters D

and N. DSR is an abbreviation for “Data Set Ready”. DCE informs the DTE that the operation

is ready.

The seventh parameter is the CD setting. One of the two letters C and N indicates that CD is

ON or OFF, respectively. CD is an abbreviation for "Carrier Detect" and is a signal that

informs that there is data to be transmitted by DCE to DTE.

The eighth parameter is the soft flow control setting. Soft flow control indicates ON or OFF

for either of the two characters B and N. Soft flow control is control in which Xoff is

transmitted to DCE and DCE transmission is interrupted until Xoff is transmitted when the

buffer is likely to overflow during data reception.

The ninth parameter is SI / SO setting. SI / SO indicates ON or OFF with either of the two

letters S and N. With SI / SO control, data length is 7 bits and half-width kana is

communicated.After receiving SI (14), the 8th bit is interpreted as 1 and data is received.After

Kapitel: II. BASIC - Referenz

2-7 BASIC Built-in Functions Seite 48

receiving SO (15), Protocol to return to normal mode, receiving 0th return bit as 0. Therefore,

SI / SO control is not required when the data length is 8 bits.

For example: "6, E, 8,1, N, N, N, B, N" is communication speed 4800 bps, even parity, data

length 8 bit, stop bit 1 bit, CTS: OFF, DSR: OFF, CD: It means OFF, soft flow control: ON, SI

/ SO: OFF.

2-7 BASIC Built-in Functions

Internal functions are classified as follows according to the return value.

• Numeric functions

• Hex prefix

• Character functions

• Other functions

Here, there are the following notes.

• In numeric functions, except for ROUND (, DEG (, REC (, POL (, NPR (, NCR (), parentheses

() can be omitted when using numerical values or variables as mathematical expressions.

• As a rule, the accuracy is ± 1 in the 10th digit of the mantissa.

• BS error occurs when the arguments of NPR (, NCR () are n = 0 and r ≠ 0.

• In FX-890P and VX-4, calculation is normally performed with 13 digits in the mantissa, and

the result is rounded and the result is displayed in 10 digits for the mantissa + 2 digits for the

exponent.

Table 5. Mathematik-Commands

Command
Name

Function
Type

Format Function

SIN
Numeric
functions

SIN (Formula) Sine function SIN. ｜ Formula | <1440 ° (8π rad, 1600 grad)

COS
Numeric
functions

COS (formula)
Cosine function COS. ｜ Formula | <1440 ° (8π rad, 1600
grad)

TAN
Numeric
functions

TAN (formula)
Tangent function TAN. | Formula | <1440 ° (8π rad, 1600
grad). However, MA error occurs when the argument is an
odd multiple of 90 ° and the function diverges at ∞.

ASN
Numeric
functions

ASN (Formula)
Inverse sine SIN -1 , ARCSIN. ｜ Formula | <= 1, -90 ° <= ASN
<= 90 °

ACS
Numeric
functions

ACS (formula)
Inverse cosine function COS -1 , ARCCOS. ｜ Formula | <= 1,
0 ° <= ACS <= 180 °

ATN
Numeric
functions

ATN (Formula)
Inverse tangent function TAN -1 , ARCTAN. ｜ Formula | <1,
-90 ° <ACS <90 °

HYP SIN
Numeric
functions

HYPSIN (Formula)
or HYP SIN
(Formula)

Hyperbolic sine function SINH. ｜ Formula | <=
230.2585092

HYP COS
Numeric
functions

HYPCOS (formula)
or HYP COS
(formula)

Hyperbolic cosine function COSH. ｜ Formula | <=
230.2585092

Kapitel: II. BASIC - Referenz

2-7 BASIC Built-in Functions Seite 49

HYP TAN
Numeric
functions

HYPTAN (formula)
or HYP TAN
(formula)

Hyperbolic tangent function TANH. ｜ Formula | <1E100

HYP ASN
Numeric
functions

HYPASN (Formula)
or HYP ASN
(Formula)

Inverse hyperbolic sine function SINH -1 . ｜ Formula |
<5E99

HYP ACS
Numeric
functions

HYPACS (Formula)
or HYP ACS
(Formula)

Inverse hyperbolic cosine function COSH -1 . ｜ Formula |
<5E99

HYP ATN
Numeric
functions

HYPATN (Formula)
or HYP ATN
(Formula)

Inverse hyperbolic tangent function TANH -1 . ｜ Formula |
<1

SQR
Numeric
functions

SQR (formula) Square root √. Formula> = 0

CUR
Numeric
functions

CUR (formula) Cubic root 3 √. | Formula | <1E99

^
Numeric
functions

x ^ y
Power. ; X , y in the formula, x when <0, y must become an
integer.

EXP
Numeric
functions

EXP (formula)
An exponential function whose base is the natural constant
e (2.718281828 ...). -1E100 <formula <= 230.2585092

LOG
Numeric
functions

LOG (formula) Logarithm with base 10 and common logarithm. Formula> 0

LN
Numeric
functions

LOG (formula)
The base is the logarithm of e , the natural logarithm.
Formula> 0

ABS
Numeric
functions

ABS (formula) | Formula |. Gives the absolute value of the formula.

INT
Numeric
functions

INT (formula)
Integer function. Gives the largest integer that does not
exceed the value of the formula.

FRAC
Numeric
functions

FRAC (formula) Gives the fractional part of the formula.

FIX
Numeric
functions

FIX (formula) Gives the integer part of the formula.

SGN
Numeric
functions

SGN (Formula)

Gives the sign of the formula.
When formula> 0, 1 is returned.
When formula = 0, 0 is returned.
When formula <0, -1 is returned.

ROUND (
Numeric
functions

ROUND (formula,
digit)

Gives the value of the mathematical expression rounded to
the specified digit (rounded). | Digit | <100 rounds 10 ^
specified digits.
For example, ROUND (1234.56, -2) = 1234.6

RAN #
Numeric
functions

RAN #
Give a random number within 10 digits after the decimal
point. 0 <= RAN # <= 0.999,999,999,9

π
Numeric
functions

PI
Gives an approximate number of pis. The value of π takes
3.1415926536 internally.

DEG (
Numeric
functions

DEG (degree [,
minute [, second]])

Converts a hexadecimal number to a decimal number. DEG
(a, b, c) = a + b / 60 + c / 3600
| DEG (a, b, c) | <10 ^ 100

Kapitel: II. BASIC - Referenz

2-7 BASIC Built-in Functions Seite 50

REC (
Numeric
functions

REC (r , θ)
where r and θ are
mathematical
expressions

The two-dimensional polar coordinate representation given
by the radius r and the argument θ is converted into
Cartesian coordinates (x , y).
As a function value, x coordinate x is returned, x is stored in
variable X, and y is stored in variable Y.
Where 0 <= r <10 ^ 100, | θ | <1440 ° (8π rad, 1600 grad)

POL (
Numeric
functions

POL (x , y)
where x and y are
mathematical
expressions

Converts a two-dimensional orthogonal coordinate
representation given by x-coordinate x and y-coordinate y
to polar coordinates (r , θ).
As a function value, the radius r is returned, the radius r is
stored in the variable X, and the argument θ is stored in the
variable Y.
Where | x | <10 ^ 100, | y | <10 ^ 100, | x | + | y |> 0 and -
180 ° < θ <= 180 °

FACT
Numeric
functions

FACT (formula)
Gives the factorial of the formula, n ! However, 0 <=
Formula <= 69 and an integer.

NPR (
Numeric
functions

NPR (n , r)
Returns a permutation that selects from r different n . NPR (
n , r) = n P r = n ! / R !. However, 0 < r <= n <10 ^ 100, and n
and r are both positive integers.

NCR (
Numeric
functions

NCR (n , r)
Returns a combination that selects r from n different
numbers . NPR (n , r) = n C r = n ! / (R ! (N - r)!). However,
0 < r <= n <10 ^ 100, and n and r are both positive integers.

FRE
Numeric
functions

FRE (argument)

Gives the size of the memory area according to the
argument. 1 <= Argument <= 5,
1: Size of unused memory in the entire program / memo
data area,
2: Size of the entire work area,
3: Size of the entire character area,
4: Unused size in the work area Used memory size,
5: Size of unused memory when character area is free

DEGR
Numeric
functions

DEGR
(hexadecimal
number)

Ab.Cdefgh · · · numbers represented by ab degrees to, cd
minute, Ef.Gh · · · converting the 60 decimal likened to the
second decimal.
It is equal to DEG (ab , cd , ef.gh ...).

DMS
Numeric
functions

DMS (formula)

The inverse function of DEGR, which converts decimal
numbers to hexadecimal numbers. Decimal number is
converted to a value represented by ab.cdefgh ... , ab is in
degrees, cd is in minutes, ef.gh ... is in seconds.

CNT
Numeric
functions

CNT Gives the number of statistically processed data.

SUMX
SUMY
SUMX2
SUMY2
SUMXY

Numeric
functions

SUMX
SUMY
SUMX2
SUMY2
SUMXY

Gives the sum of X data.
Gives the sum of Y data.
Gives the sum of squares of X data.
Gives the sum of squares of Y data.
Gives the product sum of X data and Y data.

MEANX
MEANY

Numeric
functions

MEANX
MEANY

Give the average value of X data.
Give the average value of Y data.

SDX
SDY

Numeric
functions

SDX
SDY

Gives the sample standard deviation of the X data. SDX =
SQR (MEANX2-MEANX ^ 2) Gives

Kapitel: II. BASIC - Referenz

2-7 BASIC Built-in Functions Seite 51

SDXN
SDYN

SDXN
SDYN

the sample standard deviation of Y data. SDY = SQR
(MEANY2-MEANY ^ 2) Gives the
standard deviation of the X data. SDXN = SQR (CNT / (CNT-
1)) * SDX Gives the
standard deviation of the Y data. SDYN = SQR (CNT / (CNT-
1)) * SDY

LRA
LRB

Numeric
functions

LRA
LRB

Find the linear regression constant term.
Find the linear regression coefficient.

COR
Numeric
functions

COR
The correlation coefficient (γ) is obtained based on the
statistically processed data.

EOX
EOY

Numeric
functions

EOX argument
(formula)
EOY argument
(formula)

Based on the statistically processed data, an estimated
value of X for Y is obtained.
Based on the statistically processed data, an estimated
value of Y for X is obtained.

&H Hex prefix
& H hexadecimal
string

Converts the hexadecimal string following "& H" to
hexadecimal (signed 2 byte integer). & HFF = 255

DMS$
Character
functions

DMS $ (Formula)
Converts a decimal number given as an expression into a
character string in hexadecimal notation.
| Formula | <10 ^ 5, degree minute second display.

LEN
Character
functions

LEN (character
expression)

Returns the length of the string stored in the character
expression.

MID$
Character
functions

MID $ (character
expression,
position [, number
of characters])
where the position
and number of
characters are
mathematical
expressions

Returns a string starting at the specified position in the
string of the character expression. When the number of
characters is specified, the character string of the specified
number of characters is returned from the start position.
When the number of characters is omitted, the character
string from the specified position to the end is returned.

CHR$
Character
functions

CHR $ (Formula)
Returns the character code character of the formula. 0 <=
Formula <256

LEFT$
Character
functions

LEFT $ (character
expression,
number of
characters)

Returns the character string for the specified number of
characters from the left of the character string in the
character expression.

RIGHT$
Character
functions

RIGHT $ (character
expression,
number of
characters)

Returns the character string for the specified number of
characters from the right of the character string in the
character expression.

STR$
Character
functions

STR $ (Formula) Returns the value of the formula converted to a string.

VAL
Character
functions

VAL (character
expression)

Returns a character expression that represents a number
converted to a number.

HEX$
Character
functions

HEX $ (formula)
Returns the numeric value converted to a 4-digit
hexadecimal string. -32769 <Formula <65536

ASC
Character
functions

ASC (character
expression)

Returns the character code of the first character of the
character expression.

Kapitel: II. BASIC - Referenz

2-7 BASIC Built-in Functions Seite 52

VALF
Character
functions

VALF (character
expression)

Returns the evaluation value of a mathematical expression
expressed as a character expression.

EOF
Other
functions

EOF (file number) Indicates the end of reading the file.

ERL
Other
functions

ERL
Returns the line number of the line where the error
occurred.

ERR
Other
functions

ERR
After an error occurs, an error code corresponding to the
content is returned.

PEEK
Other
functions

PEEK (address) Returns the contents of the specified address.

DSKF
Other
functions

DSKF
Returns the number of remaining clusters on the floppy
disk. One cluster is 1 Kbyte.

TAB
Other
functions

TAB (formula)
Display to the horizontal position specified by the formula
or move the print position of the printer.

INPUT$
Other
functions

INPUT $ (formula [,
file number])

Reads and returns a string of the number of characters
specified by the formula from the keyboard or the file with
the opened file number.

INKEY$
Other
functions

INKEY $

Returns one character of the key being pressed when this
function INKEY $ is executed. When not pressed, it stops
execution like INPUT and does not wait for input, but
returns null "". Refer to the key code table by INKEY
(191DH) of FX-870P / VX-4 internal information for return
value .

Kapitel: II. BASIC - Referenz

2-8 BASIC Logical Operations, etc. Seite 53

2-8 BASIC Logical Operations, etc.

Logical operators are prepared. Can also be used in CAL mode.

Table 6. Logical Operators and Others

Operator
Operation

Type
Format Function Example of Use

NOT logic NOT A Returns the bit inversion of A. The

argument type is a signed 16-bit integer (-

32768 to 32767; & H8000 to & H7FFF).

A = NOT 123: '

AND logic A AND B Returns the logical AND of A and B. The

argument type is a signed 16-bit integer (-

32768 to 32767; & H8000 to & H7FFF).

A = B AND C: '

OR logic A OR B Returns the logical OR of A and B. The

argument type is a signed 16-bit integer (-

32768 to 32767; & H8000 to & H7FFF).

A = B OR &

H8000: '

XOR logic A XOR B Returns the XOR of A and B. The

argument type is a signed 16-bit integer (-

32768 to 32767; & H8000 to & H7FFF).

A = B XOR &

H8000: '

¥ Numeric A ¥ B Returns the value obtained by rounding

off the decimal part of the result of

dividing A and B into integers.

A = 16.1 ¥ 3.5:

returns' 5

MOD Numeric A MOD B The remainder when A and B are

converted to integers and then divided.

A = B MOD 3: '

Kapitel: II. BASIC - Referenz

2-9 Arithmetic Priority Seite 54

2-9 Arithmetic Priority

The priority of calculation in BASIC and CAL mode is as follows.

Table 7. Logical Operators

Priority Operation Type Symbol

1 brackets ()

2 function SIN, COS, etc.

3 Power ^

4 Sign +-

5 Multiplication and division * /

6 Addition and subtraction +-

7 Comparison operator = <>> <> <= <<= =>> =

8 Logical operators NOT AND OR XOR

note:

① For non-functions, if the precedence is the same, the expression is computed from left to right.

Unlike normal mathematical notation, it is also applied to the power (^). For example, 3 ^ 3 ^ 2 =

(3 ^ 3) ^ 2 = 729.

② For complex functions, it is computed from right to left in the expression. For example, SIN

COS 60 = SIN (COS (60)).

③ Comparison operators cannot be used with BASIC manual commands.

③ The priority between logical operators is ①NOT, ②AND, ③OR, and XOR.

Kapitel: II. BASIC - Referenz

2-10 BASIC Error Messages Seite 55

2-10 BASIC Error Messages

Table 8. FX-890P Error Messages

Error
code

Error
message

Error Contents Workaround

1 OM error
1. Memory over or system overflow.
2. A value that cannot secure memory

was set in the CLEAR statement.

1. Shorten the program. Consider the
dimensions of the array. Consider the
dimensions of the array.

2. Consider the value in the CLEAR
statement.

3. If RAM is not expanded, expand it.

2 SN error Incorrect command or statement format.
1. Check the spelling of the instruction.
2. Check the program input.

3 ST error
The character length exceeds 255
characters.

Limit the length of characters to 255
characters.

4 TC error The formula is too complex. Separate the expressions.

5 BV error

1. I / O buffer overflowed.
2. One line is 256 bytes or more. Or

you entered more than 256
characters.

1. Reduce the baud rate of RS-232C.
2. Enter up to 255 characters per line.

6 NR error
1. I / O is not ready for input / output.
2. An attempt was made to access a

file that was not opened.

1. Check I / O connection and power
supply.

2. Set a floppy disk in the MD-120.
3. Open the file correctly.

7 RW error
An error occurred during I / O device
operation.

Check the I / O device.

8 BF error
There is an error in the file name
specification.

Check the file name.

9 BN error
There is an error in the file number
specification.

Check the file number specification.

10 NF error The specified file name cannot be found.
1. Check the file name again.
2. Check the file attributes.

11 LB error There is no power supply for MD-110S.
1. Replace the battery with a new one.
2. Use an AC adapter.

12 FL error

1. An attempt was made to write to a
floppy disk when there was no
space to write.

2. One program file exceeds
approximately 64K bytes.

3. The total size of the array exceeds
64K bytes.

1. Delete unnecessary files with the KILL
statement to increase the free space.

2. Use a new formatted floppy disk.
3. Reduce the size of one file.
4. Reduce the size of the array.

13 OV error
The calculation result or entered numerical
value exceeded the allowable range.

Consider the numbers that will be
calculated.

14 MA error

1. Mathematical errors such as division
by zero.

2. The function argument exceeds the
calculation range.

Consider formulas and numerical
values.

Kapitel: II. BASIC - Referenz

2-10 BASIC Error Messages Seite 56

15 DD error
An attempt was made to double-define the
same sequence.

1. Do not use the same array.
2. Once the array is cleared with the

ERASE instruction, it is redefined.

16 BS error
The subscript or parameter exceeds the
specified range.

1. Consider subscript parameters.
2. Increase the array.

17 FC error

1. There is an error in the way
functions and statements are called.

2. An attempt was made to execute a
statement that cannot be used in
direct mode. Or vice versa.

3. An attempt was made to execute a
statement that cannot be executed
in CAL mode.

4. Tried to undefined array.

1. Review argument values and
statements.

2. Check the grammar as some can only
be used in program mode and direct
mode.

3. Check the sentence.
4. Use after defining the array in the

DIM statement.

18 UL error

1. There is no line number specified by
GOTO, GOSUB, etc.

2. You entered a statement without
entering a line number in BASIC
EDIT mode.

1. Check the line number.
2. Be sure to include the line number.

19 TM error

1. The variable type does not match in
the right side, left side, or function
argument of the expression.

2. An attempt was made to read
character data into a numeric
variable with a READ statement.

3. An attempt was made to read
character data into a numeric
variable with the INPUT #
statement.

Check the type of the right and left
sides of the expression.

20 RE error
There is a RESUME statement even though
control was not transferred to the error
handling routine.

Consider where to use the RESUME
statement.

21 PR error

1. An invalid command or operation
was performed when PASS was set.

2. An attempt was made to write to a
write-protected floppy disk.

1. Cancel PASS.
2. Release write protection and set to

write mode.

22 DA error
A READ statement was executed when there
was no data to read.

1. Check the DATA statement.
2. Check the READ statement.

23 FO error

1. There is no FOR statement for the
NEXT statement.

2. CLEAR statement and ERASE
statement are included in the FOR-
NEXT loop.

1. Check the combination of FOR and
NEXT statements.

2. Delete the CLEAR and ERASE
statements in the loop.

24 NX error
There is no NEXT statement for the FOR
statement.

Check the combination of NEXT and
FOR statements

25 GS error

1. GOSUB statement and RETURN
statement do not correspond
correctly.

2. There is a CLEAR statement at the
destination.

1. Check the correspondence between
GOSUB statement and RETURN
statement.

2. Delete the CLEAR statement at the
jump destination.

Kapitel: II. BASIC - Referenz

2-10 BASIC Error Messages Seite 57

26 FM error
The floppy disk is not formatted.
Or the format is broken.

Always format a new floppy disk.

28 OP error
An attempt was made to reference a file
that was not opened.
Or tried to OPEN twice.

Be sure to execute the file after
executing the OPEN statement.
To OPEN a file that has already been
opened, close it once.

29 AM error
An attempt was made to use an output
command for an input open.
Or vice versa.

Use input and output commands
correctly.

30 FR error The RS-232C port detected a framing error.
Check the RS-232C connection and
data transfer method.

31 PO error

1. The RS-232C port detected a parity
error or overrun error.

2. There was a defect in reading the
cassette tape.

1. Check the RS-232C connection and
data transfer method.

2. Reduce the transfer speed.
3. Adjust the cassette tape volume.
4. Invert the cassette tape phase setting.
5. Clean the cassette tape head.

32 DF error

1. An undefined command was sent to
FDD.

2. An error occurred in the drive
device.

1. Check the command for FDD.
2. The contents of the floppy disk are

not guaranteed.
If you still get this error after trying
several times, contact CASIO.

Kapitel: II. BASIC - Referenz

2-11 Character Code Table Seite 58

2-11 Character Code Table

Table 9. Character Code Table

1.The actual shape of & H60 is a mirrored version of the characters in the table.
2.The actual shape of & H86 is 8 x 6 dots, "AA55AA55AA55" Ichimatsu pattern.
3.The shape of the characters & HE0 and & HE1 is slightly different.
4.Characters with pink background are special characters.
5.Other than special characters can be printed with FP-40 and FP-100.

6. The four characters & HFC to & HFF are user-defined characters, and the character pattern is defined by
DEFCHR $.

Upper 4 bits

0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b

o
rd

in
at

e
 4

 b
it

0 (NULL)
SP

C
0 @ P ‘ p Å 0

SP

C
ｰ ﾀ ﾐ ≥ ×

1 (DEL) ! 1 A Q a q ∫ 1 ｡ ｱ ﾁ ﾑ ≤ 円

2 (L.TOP) (INS) ” 2 B R b r √ 2 ｢ ｲ ﾂ ﾒ ≠ 年

3 # 3 C S c s ´ 3 ｣ ｳ ﾃ ﾓ ↑ 月

4 $ 4 D T d t ∑ 4 ､ ｴ ﾄ ﾔ ← 日

5 (L.CAN) % 5 E U e u Ω 5 ･ ｵ ﾅ ﾕ ↓ 千

6 (L.END) & 6 F V f v ■ 6 ｦ ｶ ﾆ ﾖ → 万

7 (BEL) ’ 7 G W g w ■ 7 ｧ ｷ ﾇ ﾗ π £

8 (BS) (8 H X h x α 8 ｨ ｸ ﾈ ﾘ ♠ ¢

9 (TAB)) 9 I Y i y β 9 ｩ ｹ ﾉ ﾙ ♥ ±

A * : J Z j z γ + ｪ ｺ ﾊ ﾚ ♦ ∓

B (HOME) + ; K [k { ε - ｫ ｻ ﾋ ﾛ ♣ 0

C (CLS)
CURSOR

(→) , < L ¥ l ¦ θ n ｬ ｼ ﾌ ﾜ □
(US

R1)

D (CR)
CURSOR

(←) - = M] m } μ x ｭ ｽ ﾍ ﾝ ○
(US

R2)

E
CURSOR

(↑) . > N ^ n ∼ σ
-

1
ｮ ｾ ﾎ ﾞ △

(US

R3)

F
CURSOR

(↓) / ? O _ o φ ÷ ｯ ｿ ﾏ ﾟ ＼
(US

R4)

Kapitel: II. BASIC - Referenz

2-11 Character Code Table Seite 59

Kapitel: III. Internal Information

Table of Contents Seite 60

Table of Contents

This information is a summary of “FX-870P analysis details” (Kota-chan) published in the July 1991

issue of PJ .

Information related to machine language in the “FX-870P Analysis Details” is currently available at

http://pb-prog.sakura.ne.jp/fx-870p.html .

• 1. Machine language related

• 1-1. Memory map

• 1-2. System area (BASIC)

• 1-3. ROM routine

• 1-4. Key matrix

• 1-5. Notes on creating machine language programs

• 2. BASIC related

• 2-1. Hidden BASIC instructions

• 2-2. BASIC program and (text) file storage format

• 2-3. Storage format of variable data

• A. Appendix

• A-1. PB-1000 memory map

• A-2. BCD floating point format and internal format

• B. BASIC program

• B-1. CHKPFAV4.BAS: Check program area and file area

• B-2. OUTWRKV4.BAS: Output variable storage status of work area to file

• B-3. CHKAV4.BAS: Numerical data of numerical variable A is displayed in binary (for

BCD floating point format investigation).

• References

Kapitel: III. Internal Information

3-1 Machine language related Seite 61

3-1 Machine Language Related

Memory Map

FX-870P and VX-4 have 4 memory banks (64KB × 4). The overall memory map is shown in FIG. The features are
as follows.

1. Compared to the PB-1000 (see A-1.) With the same CPU as the FX-870P, it is an orderly

layout with BANK0 to 3 assigned to ROM, RAM, ROM, and I / O, respectively . There are

advantages such as easy to program.

2. All system programs (BASIC, C, CASL) are in the BANK0 ROM.

3. In the BANK1 RAM, 4KB from 0000H to 0FFFH is not used by the system at all, and the VX-

4 has no memory.

4. The BANK2 ROM stores overseas characters and fonts, various messages, and training board

programs.

5. BANK3 is used for I / O. Addresses 0 to 7 of the 30-pin connector are assigned to 8000H to

8007H. By setting DEFSEG = H1000 , the PEEK and POKE argument addresses can be input /

output from 0 to 7.

Of these, the first unused 4KB of BANK1 is suitable for storing machine language programs.

Kapitel: III. Internal Information

3-1 Machine language related Seite 62

Table 1. BANK 3 ROM Details

Start address

(Hexadecimal)
ROM Contents

0000H Standard character font

0540H Character font for overseas

0A80H BASIC error message table

0EA8H unused

13F7H Data area for F.COM, CASL, FX, system message

2739H unused

27D4H Data area for ROM check program

2AD9H unused

2E1EH BASIC program for communication with 3 pins, etc.

38C4H C language command table

3BCBH unused

4248H C error message table

47CFH unknown

4C9CH unused

Kapitel: III. Internal Information

3-1 Machine language related Seite 63

System Area (BASIC)

BANK1 0000H to 0FFFH is not used. 1000H to 1CD0H are used as system areas as shown in Table 2.

• Label names that are basically the same as PB-1000 have the same name as the “PB-1000

Technical Handbook”. Other than that, Kota-chan was named.

• For bit specification, the left side of / is 1 and the right side is 0. In the case of true / false, 1 is

true and 0 is false.

• Where “Unknown” is written, the part that could not be confirmed

Table 2. List of System Work Areas

Data

classifica

tion

LABEL
ADDRESS

(Hexadecimal)

BYTE

number
Explanation

data

INTOP 1000 256 Intermediate code buffer

LCDST 1100 1

7bit: NONE

6bit: NONE

5bit: Inverted display (ON / OFF)

4bit: Cursor bar ON / OFF

3bit: Cursor movement range specification

2bit: Virtual screen / Real screen

1bit: Virtual display enable

0bit: KEY input / PRINT

EDCSR

SCTOP

TOEDB

BOEDB

MOEDB

1101

1102

1103

1104

1105

1

1

1

1

1

Cursor position

Real screen top (upper 3 bits, lower 5 bits 0)

Logical row top (upper 3 bits, lower 5 bits 0)

Log. row bottom (upper 3 bits, lower 5 bits

1)

Logical line top (when INPUT)

TOARE

BOARE

1106

1107

1

1

Cursor movement range top

Cursor movement range bottom

EDCNT

DSPMD

SCROL

1108

1109

110A

1

1

1

Position of last character entered +1

00H = Normal display / 01H = PF display

80H = 4 line scroll / 60H = 3 line scroll /

40H = 2 line scroll / 20H = 1 line scroll

ELVAD 110B

110D

2

6

Contrast data (ROM address)

unknown

Key data

KEYMD 1113 1
6bit: Kana

5bit: NONCAPS

KYSTA 1114 1

7bit: AC

6bit: OFF

5bit: APO prohibited

4bit: Contrast

3bit: REPEAT enable

2bit: REPEAT ON / OFF

Kapitel: III. Internal Information

3-1 Machine language related Seite 64

1bit: 0

0bit: 0

CHATA 1115 1 For time counting of chattering

KEYCM

KEYIN

1116

1117

1

2

KO

KI

KYREP 1119

111A

1

1

Key repeat count time

unknown

KECNT 111B 22

Key buffer

1 byte: 00H pointer reference

2 bytes: buffer pointer

1 byte: 10H buffer length

2 bytes: buffer start address

16 bytes: buffer

 1131 1 unknown

BASIC

data 1

ANGFL

RNDFL

1132

1133

1134

1

1

1

Angle mode (0: DEG, 1: RAD, 2: GRA)

0: Round after computation (MODE10), 1:

No rounding after computation (MODE11)

... (Note 1)

unknown

Screen

data

CSRDT

EDTOP

LEDTP

1135

113B

123C

6

257

768

Data buffer for blinking cursor

Input buffer

Display dot buffer

CGRAM 153C 24
Display dot pattern for character code FCH

to FFH

I / O data

RS1 1554 1

7,6,5bit:

(1 1 1) ... 75 baud (unconfirmed)

(1 1 0) ... 150 baud

(1 0 1) ... 300 baud

(1 0 0) ... 600 baud

(0 1 1) ... 1,200 baud

(0 1 0) ... 2,400 baud

(0 0 1) ... 4,800 baud

(0 0 0) ... 9,600 baud (use confirmation)

4bit: Stop bit 1/2

3bit: Data length (bit) 7/8

2bit: Parity ON / OFF

1bit: Parity Odd / Even

0bit: MT / RS-232C

RS2 1555 1
1bit: For input SO

0bit: For output XOFF

RS3 1556 1

7bit: NONE

6bit: For input XOFF

5bit: SO for output

4bit: CD control specification

3bit: DSR control designation

Kapitel: III. Internal Information

3-1 Machine language related Seite 65

2bit: CTS control designation

1bit: XON / XOFF specification

0bit: SI / SO control designation

RS4 1557 1

4bit: Framing

3bit: parity

2bit: Overrun

1bit: not Ready

0bit: Buffer

INTCK 1558 1 01H ･ ･ ･ Data reception

RXCNT 1559 258

RS-232C, MT reception buffer

1 byte: Number of receive buffers

1byte: Input pointer

256byte: Receive buffer

 165B 1 unknown

ACJMP 165C 2 Jump destination address at BREAK

BASIC

data 2

WORK1 165E 28 WORK buffer

 167A 4 unused(?)

VAR1

VAR2

VAR3

VAR4

167E

167F

1680

1681

1

1

1

2

Variable work

Variable work

Variable work

Variable work

PASS 1683 8 Password storage area (entered as XOR255)

CASPN

CPN

168B

168C

1

1

CASL program number

C program number

 168D

168E

1

41

unknown

unknown

FCOMD

FCOM1

FCOM2

1687

1688

1689

1

1

1

F.COM device, (000000AB) B.

AB = 00 ･ ･ ･ RS-232C

AB = 01 ･ ･ ･ DISK

AB = 10 ･ ･ ･ MT

F.COM P / F

F.COM number

 16BA 5 unknown

OPTCD

SEGAD

16BF

16C0

1

2

Option code

Segment value

 16C2 1 unknown

SETDA 16C3 1

With SET instruction data (00AB ####) B,

E ... A = 1 / F ... B = 1 / #### = Number of

BCD digits

MODE1 16C4 1 Impossible to confirm

MODE2 16C5 1 In FX-870P / VX-4, it always seems to be 0.

Kapitel: III. Internal Information

3-1 Machine language related Seite 66

MODE3 16C6 1

01H: BASIC running (RUN)

02H: BASIC stopped (STOP)

00H: Other

NOWFL

NOWLN

EXEDE

16C7

16C9

16CB

16CD

2

2

2

2

Same as below

The address of the file currently in use

Currently executing line number

The address of the instruction currently

being executed

 16CF 12 unknown

DATPA

CONTA

ERRFL

EJPDE

ERRLN

ERRDE

ERRN

EJPFG

TRAFG

INPER

STAT

OUTDV

IOSTS

PRSW

PTABC

RSFG

RND

ANSAD

FDDBF

16DB

16DD

16DF

16E1

16E3

16E5

16E7

16E8

16E9

16EA

16F1

1739

173A

173B

173C

173D

173E

1740

1749

174A

1753

1770

1790

1793

2

2

2

2

2

2

1

1

1

2

72

1

1

1

1

1

2

9

1

9

29

35

3

258

DATA statement pointer

Pointer to resume execution at CONT

ON ERROR Valid file DIR address

ON ERROR Jump destination pointer

Error line number

Error statement statement address

Error number

00H: Normal processing / 01H: ON ERROR

processing

00H: TROFF / 01H: TRON

INPUT Error return address

Data for STAT

Output device (00: display, 02: printer, 04:

FCB)

IBIT ON reception open / OBIT ON

transmission open

PRT ON / OFF (1/0)

Number of printer output characters

unknown

RS-232C default value (DATA of RS1, RS3)

Random number data

unknown

ANS data

unknown

FILE work (?)

unknown

FDD buffer

Main

data

IOBF

SSTOP

SBOT

FORSK

GOSSK

TONDT

DTTB

TOSDT

PTSDT

P0STT

P1STT

P2STT

P3STT

1895

1897

1899

189B

189D

189F

18A1

18A3

18A5

18A7

18A9

18AB

18AD

2

2

2

2

2

2

2

2

2

2

2

2

2

Start address of I / O buffer

First address of character calculation work

Stack free area start address

FOR stack pointer

GOSUB stack pointer

Numeric conversion data

Variable table

Character variable data

Character data free area

P0 first address

P1 start address

P2 start address

P3 start address

Kapitel: III. Internal Information

3-1 Machine language related Seite 67

P4STT

P5STT

P6STT

P7STT

P8STT

P9STT

F0STT

F1STT

F2STT

F3STT

F4STT

F5STT

F6STT

F7STT

F8STT

F9STT

MEMEN

DIREN

CALC

IOBUF

18AF

18B1

18B3

18B5

18B7

18B9

18BB

18BD

18BF

18C1

18C3

18C5

18C7

18C9

18CB

18CD

18CF

18D1

18D3

19D5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

258

258

P4 start address

P5 start address

P6 start address

P7 start address

P8 start address

P9 first address

F0 start address

F1 start address

F2 start address

F3 start address

F4 start address

F5 start address

F6 start address

F7 start address

F8 start address

F9 start address

File / Free area start address

RAM end address

Calc buffer

I / O buffer for SAVE / LOAD

stack

SSPBT

SSPTP

USPBT

USPTP

1AD7

1BD7

1BD7

1CD0

256

0

249

0

System stack area

User stick area

* (Note 1) Although it was written as MODED in “FX-870P Analysis Details”, it was found to be data

that determines the validity / invalidity of rounding after four arithmetic operations. The name of the

equivalent system area data of the described FX-890P / Z-1 ROUNDFLG is now referred to as

RNDFL in accordance with the nomenclature of FX-870P (PB-1000).

Kapitel: III. Internal Information

3-1 Machine language related Seite 68

ROM Routine

 Table 3 shows the available BANK1 ROM routines that have been confirmed so far. The names of the
same routines as in the “PB-1000 Technical Handbook” remain the same. How to call a ROM routine from a
machine language program is explained in 1-5.

Table 3. FX-870P ROM Routine List

Label

Name
Address Function

NEXTC 0049H

(73)

The search is started from the address specified by IZ, and if a code other

than space (20H) is found, that code is placed in $ 0.

[input]

IZ: Search start address

[output]

IZ: Address where the code at $ 0 exists

$ 0: first non-space code

ENDSC 003CH

(60)

When NEXTC is executed and the value of $ 0 is 0, 1, 2, the flag register

carry is turned ON (1)

[input] IZ: Search start address

[output] IZ: Address where the code at $ 0 exists

$ 0: first non-space code

FLG: Carry flag = 1 @ $ 0 = 0,1,2

OKNMI 002BH

(43)

When the value of $ 0 is a number (ASCII code 30H to 39H), the flag

register carry is turned ON (1).

[input] $ 0: code to check

[output] $ 0: code

FLG: Carry flag = 1 @ $ 0 = 30H-39H

OKAMI 00ABH

(171)

When the value of $ 0 is an alphabetic capital letter (A to Z), the flag

register carry is turned ON (1).

[input] $ 0: code to check

[output] $ 0: code

FLG: Carry flag = 1 @ $ 0 = "A"-"Z"

FC07 00E9H

(233)

The search starts from the address specified by IZ, and if a code other than

space (20H) is found, $ 1 (7 is stored) and $ 2 are compared against the 2

bytes of the code at the next address . As a result, if they match, the zero

flag is turned ON (1).

[input] IZ: Search start address

$ 2: Second code

[output] $ 1: 07H

$ 2: Second code

FLG: Zero flag 1 @ match / 0 @ mismatch

IZ: Address of the first code found + 2 @ Z = 1 / unchanged @ Z = 0

Register $ 0 whose contents are destroyed

☆ Routines of the same series

FC06 00EBH (235) $ 1 = 06H

FC05 00EDH (237) $ 1 = 05H

FC04 00EFH (239) $ 1 = 04H

Kapitel: III. Internal Information

3-1 Machine language related Seite 69

The rest is exactly the same as FC07. This routine is used to determine

BASIC instructions.

SCF2F 00BBH

(187)

After executing NEXTC , if the value of $ 0 matches $ 1 (= 2FH), the zero

flag is turned ON (1).

[input] IZ: Search start address

[output] $ 0: first non-space code

$ 1: 2FH

FLG: Zero Flag 1 @ ($ 0) = ($ 1) / 0 @ ($ 0) <> ($ 1)

IZ: Address of the first code found + 1 @ Z = 1 / unchanged @ Z = 0

☆ Routines of the same series

SCF3A 00BDH (189) $ 1 = 3AH

SCF22 00BFH (191) $ 1 = 22H

SCF40 00C1H (193) $ 1 = 40H

SCF2C 00C3H (195) $ 1 = 2CH

SCF28 00C5H (197) $ 1 = 28H

SCF29 00C7H (199) $ 1 = 29H

SCF2D 00C9H (201) $ 1 = 2DH

SCF3B 00CBH (203) $ 1 = 3BH

SCF23 00CDH (205) $ 1 = 23H

SCF2E 00CFH (207) $ 1 = 2EH

SCFXX 00D1H (209) $ 1 = value entered by myself immediately before

The rest is exactly the same as SCF27.

SCE3B 00D7H

(215)

After executing NEXTC , if the value of $ 0 matches $ 1 (= 3BH), the zero

flag is turned ON (1). If it doesn't match, it becomes SNerr.

[input] IZ: Search start address

[output] FLG: Zero Flag 1 @ ($ 0) = ($ 1) / 0 @ ($ 0) <> ($ 1)

When Z = 1

$ 0: first non-space code

$ 1: 3BH (";")

IZ: First code address +1

When Z = 0

SNerr

☆ Routines of the same series

SCE24 00D9H (217) $ 1 = 24H

SCE2C 00DBH (219) $ 1 = 2CH

SCE2D 00DDH (221) $ 1 = 2DH

SCE29 00DFH (223) $ 1 = 29H

SCE28 00E1H (225) $ 1 = 28H

SCF3D 00E3H (227) $ 1 = 3DH

SCEXX 00E5H (229) $ 1 = value entered by myself just before

The others are exactly the same as SCE3B.

TCAPS 00B6H

(182)

Convert lowercase alphabetic codes in $ 0 to uppercase alphabetic codes.

No conversion is performed for non-alphabetic characters.

[input] $ 0: lowercase alphabetic code

[output] $ 0: Alphabet capital letter code

CHEXI 009DH

(157)

If the code in $ 0 is characters 0 to 9, A to F, a to f (30H-3H, 41H-46H,

61H-66H), $ 0 is converted to a numerical value (00H-0FH) as a

Kapitel: III. Internal Information

3-1 Machine language related Seite 70

hexadecimal character .

[input]

$ 0: Hexadecimal character code

[output]

$ 0: Hexadecimal conversion value (00H-0FH)

CLEME 014CH

(332)

Clears the number of bytes specified by $ 2 and $ 3 to 0 from the specified

saler address by $ 0 and $ 1. If $ 2 and $ 3 are 0, do not execute.

[input] $ 0, $ 1: Start address to clear

$ 2, $ 3: number of bytes to clear

[output] IZ: Cleared address + 1

$ 5 to $ 13: All 0

Registers whose contents are destroyed $ 0 to $ 2, $ 14

CLEDB 9338H

(37688)

Clear the contents of EDTOP (113BH-123BH) and LEDTP (123CH-

153BH) of BANK1 to 0 and set each pointer to CLS.

[output] IX: Contents of EDCSR (1101H)

Contents of IZ: MOEDB (1105H)

Registers whose contents are destroyed $ 0 to $ 14

DOTDS 930FH

(37647)

Displays full screen according to the contents of DSPMD (1109H).

Transfer the contents of 3 or 4 lines from LEDTP (123CH-153BH) +

SCTOP (1102H) x 6 to the LCD.

[input] Depending on the contents of DSPMD (1109H), it is determined

whether it is 3 or 4 lines.

[output] None

Registers whose contents are destroyed $ 0 to $ 15, IX

BRSTR 297AH

(10618)

Put the contents of $ 2 and $ 3 into ACJMP (165CH, 165DH).

[input] $ 2, $ 3: data

[output] None

Register IX whose contents are destroyed

CRTKY 23C8H

(9160)

Contrast key execution KEY sample flow. The BREAK key jumps to the

address specified by ACJMP (165CH, 165DH).

[input] None

[output] $ 0: Key code (see Table 4) is entered.

Registers whose contents are destroyed $ 1 to $ 11, IX, IZ

KYCHK 506EH

(20590)

Check the OFF , BREAK , and STOP keys.

[input] None

[output] FLG: Zero flag = 1 @ STOP key

Registers whose contents are destroyed $ 0 to $ 4

BKCK 29C5H

(10693)

Check OFF key and sample BREAK key.

[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 4

OUTCR 2AE8H

(10984)

Outputs 0DH and 0AH (CR, LF) to the device.

[input] The device depends on the contents of OUTDV (1739H).

[output] None

Registers whose contents are destroyed $ 0 to $ 13, $ 16, IX

Kapitel: III. Internal Information

3-1 Machine language related Seite 71

PROUT 89A9H

(35241)

Output $ 16 contents to the printer. If it is not connected to the printer, it

will be NRerror.

[input] $ 16: Data output to the printer

[output] None

Registers whose contents are destroyed $ 0 to $ 6, IX

DTBIN 1EE6H

(7910)

The ASCII code existing at the address specified by IZ is converted to a

numerical value as a decimal number.

• If the conversion result exceeds 65536, an OV error will occur.

• Returns 0 if there are no numeric characters (30H-39H).

・ If a code other than numeric characters (30H-39H) exists, it will end

immediately. At this time, skip the space.

[input] IZ: Start address of the string to be converted to a number

[output] IZ: Address where data other than "0"-"9" (30H-39H) exists

$ 17, $ 18: Conversion result value

Registers whose contents are destroyed $ 0 to $ 3, $ 16

BINMZ 0EFDH

(3837)

Real type number x in $ 10 to $ 18 is -32769 <x<65536
[input] $ 10 to $ 18: Real number
[output] $ 15, $ 16: integer type number
Registers whose contents are destroyed $ 10 to $ 14, $ 17 to $ 18, IX</x<65536

BIN01 0EC6H

(3782)

If the real type number x in $ 10 to $ 18 is 0 <= x <256, it is converted to

an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10 to $ 14, $ 17 to $ 18, IX

BIN11 0ECEH

(3790)

If the real type number x in $ 10 to $ 18 is 1 <= x <256, it is converted to

an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10 to $ 14, $ 17 to $ 18, IX

BIN02 0EE2H

(3810)

If the real type number x in $ 10 to $ 18 is 0 <= x <65536, it is converted to

an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10 to $ 14, $ 17 to $ 18, IX

BIN12 0EE8H

(3816)

If the real type number x in $ 10 to $ 18 is 1 <= x <65536, it is converted to

an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10 to $ 14, $ 17 to $ 18, IX

SIKI 1088H

(4232)

Execute an expression (which may be a character expression) and obtain

the result.

• When the result is a numeric value, it is stored as a real number value in $

10 to $ 18.

• When the result is a character string, it is stored in the free area of RAM,

the start address of the character string is stored in $ 15 and $ 16, and the

character length is stored in $ 17.

[input] IZ: RAM start address where the expression is stored. Reserved

words (functions, etc.) in expressions must be converted to internal code.

Kapitel: III. Internal Information

3-1 Machine language related Seite 72

[output] IZ: End of expression + 1 address

・ When the result is numeric

$ 10 to $ 18: Real number

FLG: Turn carry (OFF).

-When the result is a string

$ 15, $ 16: string start address

$ 17: string length

FLG: Turns carry on (1).

EXPRW 112FH

(4399)

Execute the mathematical formula and obtain the result.

[input] IZ: RAM start address where the expression is stored. Reserved

words (functions, etc.) in expressions must be converted to internal code.

[output] IZ: End of expression + 1 address

$ 10 to $ 18: Real number

NISIN 0AFAH

(2810)

The value of $ 17 is the BCD number. Convert to binary.

[input] $ 17: BCD number

[output] $ 17: Binary conversion value

Register $ 19 whose contents are destroyed

SIKI2 11D2H

(4562)

Execute a character expression and obtain the result.

[input] IZ: RAM start address where the expression is stored. Reserved

words (functions, etc.) in expressions must be converted to internal code.

[output] IZ: End of expression + 1 address

$ 15, $ 16: string start address

$ 17: string length

INKEY 191DH

(6429)

INKEY $ subroutine.

[input] None

[output] $ 15, $ 16: Address where keyed data (see Table 5) is stored

$ 17: 0 @ No key input / 1 @ Key input

Registers whose contents are destroyed $ 0 to $ 5, $ 18, IX

?? Err following BASIC error occurred. After execution, waits for input in BASIC or CAL

mode.

[input] None

[output] None

The error name and its address are as follows.

LBERR ･ ･ ･ ･ 2B5EH (11102) (Note 1, 2)

OMERR ･ ･ ･ 2B6DH (11117)

SNERR ･ ･ ･ 2B70H (11120)

STERR ･ ･ ･ 2B74H (11124)

TCERR ･ ･ ･ 2B78H (11128)

BVERR ･ ･ ･ 2B7CH (11132)

NRERR ･ ･ ･ 2B80H (11136)

RWERR ･ ･ ･ ･ 2B84H (11140)

BFERR ･ ･ ･ 2B88H (11144)

BNERR ･ ･ ･ 2B8CH (11148)

NFERR ･ ･ ･ 2B90H (11152)

FLERR ･ ･ ･ ･ 2B94H (11156)

OVERR ･ ･ ･ 2B98H (11160)

MAERR ･ ･ ･ 2B9CH (11164)

Kapitel: III. Internal Information

3-1 Machine language related Seite 73

DDERR ･ ･ ･ 2BA0H (11168)

BSERR ･ ･ ･ 2BA4H (11172)

FCERR ･ ･ ･ ･ 2BA8H (11176)

ULERR ･ ･ ･ 2BACH (11180)

TMERR ･ ･ ･ 2BB0H (11184)

REERR ･ ･ ･ 2BB4H (11188)

PRERR ･ ･ ･ 2BB8H (11192)

DAERR ... 2BBCH (11196)

FOERR ･ ･ ･ 2BC0H (11200)

NXERR 2 ... 4BC4H (11204)

GSERR ･ ･ ･ 2BC8H (11208)

FMERR ･ ･ ･ 2BCFH (11215)

FDERR ･ ･ ･ 2BD3H (11219)

OPERR ･ ･ ･ 2BD7H (11223)

AMERR ･ ･ ･ 2BDBH (11227)

FRERR ･ ･ ･ 2BDFH (11231)

POERR ･ ･ ･ ･ 2BE3H (11235)

DFERR ･ ･ ･ 2BE7H (11235)

BEEP 33B3H

(13235)

BASIC BEEP sound is generated.

[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 3

ENLST 508BH

(20619)

The BASIC program stored in internal code is converted into ASCII code

for one line from the address specified by IZ and stored in INTOP (1000H-

10FFH).

[input] IZ: Address where the line of the BASIC program to convert starts

[output] IZ: Start address of next line or program end (0)

Registers whose contents are destroyed $ 0 to $ 16, IX

RSOPN 84ECH

(34028)

Open RS-232C hardware.

・ Set baud rate

・ Turn on DTR and RTS.

[input] $ 00: Open mode = 01H @ Transmission / 02H @ Reception / 03H

@ Transmission / reception

$ 11: Value entered in RS1 (1554H)

$ 13: Value entered in RS3 (1556H)

If you do not set RS1 to RS4 of the work area before calling this routine, it

will not operate normally.

[output] None

Registers whose contents are destroyed $ 0 to $ 6, IX

RSCLO 8563H

(34147)

Performs RS-232C hardware close.

[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 3, IX

RSGET 8590H

(34192)

Extract one character from the RS-232C receive buffer. When the buffer is

empty, wait until data is received.

• If XON / XOFF is specified and XOFF is selected, one character is first

Kapitel: III. Internal Information

3-1 Machine language related Seite 74

extracted from the buffer. When the remaining characters are 32 characters

or less, XON is transmitted.

• When an error is detected, jump to each error.

[input] None

[output] $ 0: Receive data

Registers whose contents are destroyed $ 1 to $ 4, IX

PRTRS 85FBH

(34299)

Send $ 16 data via RS-232C.

• If XON / XOFF is specified and XOFF is set, wait until it becomes XON.

• If SI / SO is specified, control it.

[input] $ 16: Transmission data

[output] None

Registers whose contents are destroyed $ 0 to $ 4, IX

NTX 865CH

(34396)

Send the contents of $ 0 via RS-232C.

• Sends the contents of $ 0 regardless of the XON / XOFF and SI / SO

specifications.

[input] $ 0: Transmission data Upper 2 bits of UA register = 11

[output] None

DOTMK 977FH

(38783)

Create a dot pattern for the character in EDTOP (113BH-123BH) specified

by $ 10, $ 11 in LEDTP (123CH-153BH).

[input] $ 10: Start cursor address

$ 11: End cursor address

[output] None

Registers whose contents are destroyed $ 0 to $ 11, IX, IZ

*

(Note 1) Ayaka Toji, PJ February 1991, p.106, `` ROM analysis of FX-870P ''.

(Note 2) Errors not listed in the error message list in CASIO “VX-4 Operation Text”, p.93. Short for

"Low Battery"?

Kapitel: III. Internal Information

3-1 Machine language related Seite 75

Table 4. Key Code Table by CRTKY (23C8H)

* E on A0H is the π button on the Numeric Keypad

BRK , STOP , OFF , ALL RESET , CASL , FX , C , MODE ,

CONTRAST ↑ ↓ Keys are executed. CAPS , Kana changes State.

Upper 4 Bits

0 1 2 3 4 5 6 7 8 9 A B C D E F

U
n

d
er

 P
la

ce
 4

 B
it

0 F.TOP SPC 0 @ P ' p PRINT 3 √ Ε ﾀ ﾐ ENG P0

1 F.END DEL ! 1 A Q a q
SYSTE

M
√ X2 ｱ ﾁ ﾑ TAB P1

2 L.TOP INS " 2 B R b r CLEAR hyp X3 ｲ ﾂ ﾒ MR P2

3 # 3 C S c s CONT SET ｳ ﾃ ﾓ Min P3

4 $ 4 D T d t RENUM FACT ｴ ﾄ ﾔ M + P4

5 L.CAN % 5 E U e u RUN RAN # ｵ ﾅ ﾕ M- P5

6 L.END & 6 F V f v EDIT π ｦ ｶ ﾆ ﾖ IN P6

7 ' 7 G W g w log nPr ｧ ｷ ﾇ ﾗ OUT P7

8 BS (8 H X h x ln nCr ｨ ｸ ﾈ ﾘ CALC P8

9) 9 I Y i y e x HEX $ ｩ ｹ ﾉ ﾙ ANS P9

A * : J Z j z sin DEGR ｪ ｺ ﾊ ﾚ

B HOME + ; K [k { cos DMS ｫ ｻ ﾋ ﾛ

C CLS → , < L ¥ l | tan POL (ｬ ｼ ﾌ ﾜ

D EXE ← - = M] m } sin -1 REC (ｭ ｽ ﾍ ﾝ

E ↑ . > N ^ n ~ cos -1 & H ｮ ｾ ﾎ ﾞ
MEM

O

F ↓ / ? O _ o tan -1 10 x ｯ ｿ ﾏ ﾟ LINE

Kapitel: III. Internal Information

3-1 Machine language related Seite 76

Table 5. Key Code Table by INKEY (191DH)

* When BRK is executed, processing is transferred to the address indicated by ACJMP .

Upper 4 Bits

0 1 2 3 4 5 6 7 8 9 A B C D E F

U
n

d
er

 P
la

ce
 4

 B
it

0 SPC 0 P ‘ p ENG

1 1 A Q a q

2 INS 2 B R b r MR

3 OFF 3 C S c s

4 4 D T d t M+

5 5 E U e u

6 6 F V f v IN

7 7 G W g w OUT

8 BS (8 H X h x
CAL

C

9) 9 I Y i y ANS

A * J Z j z
ALL

RESET

B + K k MODE

C CLS → , L l

D EXE ← - = M m

E ↑ . N ^ n MEMO

F ↓ / O o LINE

Kapitel: III. Internal Information

3-1 Machine language related Seite 77

1-4. Key matrix Table 6 shows the key matrix of FX-870P. To obtain a key, first assign the specified

output value (7 if "6") to the IA register, and if the key is pressed, the corresponding bit in the KY

register will be 1 (If it is "6", the 0th bit becomes 1. In other words, KY = 0001H).

Listing 1 shows a sample program that can read 2 , 4 , 6 , 8 and SPC simultaneously. If you call this

program, $ 0 returns the result as follows.

7 6 5 4 3 2 1 0 (bit)

0 0 0 SPC 8 2 4 6

The bit where the key was pressed becomes 1.

Table 6. FX-870P Key Matrix Table

* E is the π button on the numeric keypad

IA Register Key Output Specification Value

1 2 3 4 5 6 7 8 9

K
Y

 L
e
s

T
h

e
T

h
e

T
 o

f
 O

u
t

P
o
w

er
 B

i
 T

su

G
 P

la
c
e

P
la

ce

0 Fx ln hyp (9 6 3 E *

1 CASL log MR M + 8 5 2 .

2 SHIFT 7 ENG 4 ANS 1 SPC
0

(zero)

3 → INS O P K L , =

4 ↓ ← U I H J N M

5 CALC ↑ T Y F G V B

6 IN OUT E R S D X C

7 BRK OFF MEMO Q W RESET A CAPS Z

14 X 2 MODE cos tan CLS / - EXE

15 DEGR √ sin) ^ BS * +

Kapitel: III. Internal Information

3-1 Machine language related Seite 78

Listing 1. Simultaneous Key Input Subroutine

ADRS Code Label Mnemonic Comment

xx00 02 60 1F KEY: LD $ 0, $ 31 ; Clear result input register ($ 31 = 0)

xx03 57 00 08 PST IA, & H08 ; SPACE check

xx06 42 01 04 LD $ 1, & H04

xx09 77 2D xx CAL SCAN

xx0C 57 00 06 PST IA, & H06 ; 8 check

xx0F 42 01 02 LD $ 1, & H02

xx12 77 2D xx CAL SCAN

xx15 57 00 08 PST IA, & H08 ; 2 check

xx18 42 01 02 LD $ 1, & H02

xx1B 77 2D xx CAL SCAN

xx1E 57 00 05 PST IA, & H05 ; 4 check

xx21 42 01 04 LD $ 1, & H04

xx24 77 2D xx CAL SCAN

xx27 57 00 07 PST IA, & H07 ; 6 check

xx2A 42 01 01 LD $ 1, & H01

xx2D 18 60 SCAN: BIU $ 0 ; Bit up $ 0

xx2F 9F 22 GRE KY, $ 2 ; Matrix key scan

xx31 0C 62 01 AN $ 2, $ 1 ; Clear key bits to check

xx34 F0 RTN Z ; Return if no key to check is pressed

xx35 0E 60 1E OR $ 0, $ 30 ; Set the least significant bit ($ 30 = 1)

xx38 F7 RTN

Note: Although the subroutine SCAN is as follows in the original, it is NG because the result is

strange.

ADRS Code Label Mnemonic Comment

xx2D 18 60 SCAN: BIU $ 0 ; Matrix can

xx2F 9F 22 GRE KY, $ 2 ; Dummy input

xx31 9F 24 GRE KY, $ 4 ; This input

xx33 81 62 04 SBCW $ 2, $ 4 ; Key check

xx36 B4 8A JR NZ, SCAN

; Return if not pressed. → When you return,

the result is strange because $ 0 is bit-up

extra!

xx38 0C 62 01 AN $ 2, $ 1 ; Clear key bits to check

xx3B F0 RTN Z ; Return if no key to check is pressed

xx3C 0E 60 1E OR $ 0, $ 30 ; Set the least significant bit ($ 30 = 1)

xx3F F7 RTN

Kapitel: III. Internal Information

3-1 Machine language related Seite 79

1-5. Notes on creating Machine Language Programs

The FX-870P / VX-4 uses an 8-bit CPU called Hitachi's HD61700. This CPU has the following

registers (Figure 2). For details, refer to “ 2-2. Register Configuration ” in “ HD61700 Cross

Assembler ”.

o Internal register

• $ 0 to $ 31 Main register

• IX, IY, IZ Index register

• SSP, USP Stack pointer

• PC Program counter

• SX, SY, SZ Specific index register

o Flag register (F)

• Z Zero flag

• C Carry flag

• LZ Lower digit flag

• UZ Upper digit flag

• SW Power switch state flag

• APO Auto Power Off State Flag

o Status register

• IE Interrupt enable register

• IA Interrupt selection & KEY output register

• IB Interrupt control and memory bank range specification register

• UA Upper address specification register

• PE Port status specification register

• PD Port data register

• TM Timer data register

• KY Key input register

Figure 2. HD61700 register configuration

Here, SX, SY, SZ, IB, and TM were unknown in “FX-870P Analysis Details” . The user can freely use

$ 0 to $ 29, index registers IX, IY, IZ and flag register F, and there are restrictions on the use of other

registers. In particular, Casio's pocket computer is fixed at $ 30 and $ 31, SX, SY, and SZ are fixed at

31, 30, and 0, respectively, and can operate at high speed when $ 31, $ 30, and $ 0 are specified as the

Kapitel: III. Internal Information

3-1 Machine language related Seite 80

second operand, respectively. The ROM is coded so that Therefore, be careful not to change the

contents of $ 30 (= 1), $ 31 (= 0), SX (= 31), SY (= 30), SZ (= 0). (note)

FX-870P and VX-4 can call their own machine language program with BASIC hidden instruction

MODE110 (address) , but it is not officially supported. Therefore, unlike PB-1000 and FX-890P / Z-1,

FX-870P and VX-4 BASIC cannot secure the machine language area with the CLEAR instruction, so

secure the machine language area as follows. There is a need to.

• Use less frequently used areas such as CALC (calc buffer), IOBUF (SAVE / LOAD I / O

buffer), and CGRAM (user-defined character area) in the system area. However, a large free

area cannot be secured, and there is always a risk of machine language data being

destroyed.

• The first 4KB of RAM area 0000 to 0FFFH is unused on the system side, so it can be used for

machine language with a certain size.

However, the unmodified VX-4, which is 32KB and not equivalent to FX-870P, cannot be

used even if the additional memory RP-33 is 40KB.

• Ao's extended CLEAR instruction can secure the machine language area for the number of

bytes specified from 1CD0H (from 6CD0H for VX-3 extended CLEAR). However, because

the extended CLEAR machine language routine is placed in the CALC (calc buffer) in the

system area , storing the formula with more than 32 characters with the IN key limits the

extended CLEAR.

• If CLEAR-ZERO is used, the above extended CLEAR is relocated to addresses 0 to 123, the

same operation as the above extended CLEAR is possible, and the user program can be resident

unless the contents of addresses 0 to 123 are destroyed. Become. However, as mentioned above

, CLEAR-ZERO cannot be used with an unmodified VX-4 that is not 32KB.

In this way, there are merits and demerits in securing the machine language area of FX-870 and VX-4.

Even if a machine language is secured from 1CD0H with extended CLEAR, if a C program is

executed in C language mode, the information in the machine language area will be destroyed.

Therefore, when returning from C language and executing machine language, it is necessary to reload

machine language again. For the time being, CASL confirmed that the data in the machine language

area was not destroyed after executing a simple program, but it is unknown whether it was completely

destroyed.

When returning (ending) from a user-written machine language program to BASIC, processing must

be transferred from BANK1 with the machine language program to BANK0 with the BASIC ROM.

Therefore, bank switching is required at the end of the program, so be sure to add the following code at

the end of the machine language program.

Listing 2. Exit code for machine language program

ADRS Code Label Mnemonic Comment

xxxx 56 60 54 PST UA, & H54 ; Switch to bank 0

xxxx F7 RTN ; RETURN

Similarly, bank calls are required for FX-870P ROM calls from homebrew machine language

programs. Listings 3 and 3-2 show machine language samples that make ROM calls. This ROM call is

a well-known method for HD61700 ROM calls. First, enter the ROM routine address to be called into

$ 17 and $ 18, call your own BSCLL, switch from here to BANK0 and jump. This program uses $ 15

to $ 18, but if you want to use these registers in a BIOS call, you need to change the registers

accordingly.

Kapitel: III. Internal Information

3-1 Machine language related Seite 81

Listing 3. Machine language sample for ROM calls

ADRS Code Label Mnemonic Comment

0000 D1 11 0F 93 LDW $ 17, & H930F ; DOTDS (full screen display) address

0004 77 0B 00 CAL RMCLL ; Execute ROM call

0007 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0

000A F7 RTN ; Back to BASIC

000B D1 0F 23 53 RMCLL: LDW $ 15, & H5323 ; ROM call routine

000F A6 10 PHSW $ 16 ; & H5323 is pushed into system stack

0011 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0

0014 DE 11 JP $ 17 ; BIOS call

Listing 3-2. ROM call routine

ADRS Code Label Mnemonic Comment

000B D1 0F 23 53 RMCLL: LDW $ 15, & H5323 ; ROM call routine

000F A6 10 PHSW $ 16 ; & H5323 is pushed into system stack

0011 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0

0014 DE 11 JP $ 17 ; BIOS call

* "JP $ 17" (opcode DEH) has been described as "JP ($ C5)" in "FX-870P Analysis Details" , but Piotr

Piatek specified indirect memory address using the main register ($ C5) By finding the jump

instruction (opcode DFH), the unnaturalness of the notation can no longer be ignored, and now it has

been changed to "JP $ C5".

Ao's HD61 cross assembler supports "JP $ C5" notation from Ver0.34, so it will malfunction when

assembling the old notation source.

Therefore, if there is a "JP ($ C5)" mnemonic, the source may be modified, so be careful.

Also, Ao taught me the equivalent of the ROM call routine prepared in the AI-1000 ROM that was

introduced in Ref. (5) , so it is shown in Listing 4 (Ref. (16)). This method is characterized by the fact

that the registers to be destroyed are fixed at $ 28 and $ 29, but the number of registers used is smaller

than in list 3, and the execution time is longer than in list 3.

Listing 4. Using the ROM call routine provided in FX-870P / VX-4 ROM

ADRS CODE LABEL MNEMONIC comment

0000 D1 1C 0F 93 LDW $ 28, & H930F ; DOTDS (full screen display) address

0004 77 0B 00 CAL RMCLL ; Execute ROM call

0007 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0

000A F7 RTN ; Back to BASIC

000B RMCLL: ; ROM call routine

000B 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0

000E 37 21 53 JP & H5321 ;

(note)

Settings for $ 30 and $ 31 in CASIO Pokécons PB-1000, FX-860P, FX-870P, VX-4, etc. , SZ = 0 is

assumed to be used as a fixed value, but the values of $ 30 and $ 31 are 1 and 0 as follows.

Kapitel: III. Internal Information

3-1 Machine language related Seite 82

• The HD61700 does not have increment and decrement instructions, but these are operations

that are frequently used by computers, so the benefits of high speed are significant. At this

time, if 1 is put in the main register specified by the specific index register rather than adding

constant 1, high-speed operation is possible. In fact,

• AD $ 2, $ SX Indirect specification of $ 30 (= 1) by specific register.

 One byte code can be shorter than main register specification.

• AD $ 2, $ 1 Here, $ 1 = 1

• AD $ 2, 1 Increment by immediate value 1

• Of these operations, only the top is 9 clocks and the rest is 12 clocks, which can be 25% faster.

• HD61700 index registers IX and IZ cannot be used alone, except for the exception of block

transfer instructions, and can only be used in the form {IX | IY} ± A (specific index register

specification, main register, 8-bit direct value) If you want to perform IX + 0, you can use the

register specified by the specific index register to increase the speed by 3 clocks as above.

Therefore, it is useful to assign 0 to the main register specified by a specific index register.

• For the above reasons, assigning both 0 and 1 to the main register specified by the specific

index register is effective for speeding up, but by setting $ 30 = 1 and $ 31 = 0, the register pair

($ 31, $ 30) The increment / decrement speed can be increased even with 16-bit arithmetic.

Also, it is important to assign 0 to the main register.

LD $ 2, $ SY Indirect specification of $ 31 (= 0) by specific register.

 One byte code can be shorter than main register specification.

• LD $ 2, 0 Immediate value substitution of 0

• XR $ 2, $ 2 Own exclusive OR.

• Of these, only 9 clocks can be transferred by specifying the top specific index register, and the

remaining 12 clocks, which can be accelerated by 3 clocks. However, speeding up the word

transfer of 0

LDW $ 0, $ SY Indirect specification of $ 31 (= 0) by specific register.

 One byte code can be shorter than main register specification.

• Can only be loaded into ($ 1, $ 0) pairs, generally

XRW $ 2, $ 2 Exclusive OR of yourself in the word.

• Seems to be the fastest exclusive OR (likely because I'm not familiar with HD61700 yet).

The HD61700 cross assembler has the optimization option turned on by default, and even if a

specific register is not specified by the above-mentioned Casio Pokekon register setting premise,

the specific register is automatically specified. Therefore, it is only necessary to remember that $

30 = 1, $ 30 = 0 and $ 30, $ 31, $ 0 can be accelerated by specifying a specific index register.

Kapitel: III. Internal Information

3-2 BASIC Related Seite 83

3-2 BASIC Related

In “FX-870P Analysis Details” , only the BASIC hidden instructions and the program storage format

were explained. Later, Jun Amano's “BB variable storage format of PB-1000 / C” explained the

variable storage method in PB-1000. This time, we will investigate the storage method of variables

based on this, and also explain what was corrected in the above explanation.

Hidden BASIC Instructions

Two hidden instructions were found.

① MODE command grammar is

MODE Argument 1 (argument 2) has different functions depending on the value of argument 1.

Mode10, 11: PJ Although unknown in the FX-870P analysis details of the July 1991 issue, rounding is

performed after four arithmetic operations in MODE10, and rounding is not performed in MODE11.

Mode110: Call the machine language program in BANK1. Argument 2 is an address.

Mode200,201: FD sector READ, WRITE command. Argument 2 is (track, surface, sector), track is 0-

79, surface is 0-1, sector is 1-8. It is unknown which is READ.

(2) CALCJMP instruction This is the same as pressing the CALC key with an instruction without an

argument, and executes the formula entered with the IN key. However, it can be executed only in CAL

mode, and FCerror in BASIC mode.

BASIC Program and (Text) File Storage Format

In the (text) file area file that can store P0 to F9 programs and C and CASL source files, the start

addresses where the respective data are stored are stored in P0STT to F9STT of the system area. The

end code of the program (BASIC) is 00H and the end code of the file is 1AH, both of which consume

at least 1 byte and consume 20 bytes in total. In the VX-4 manual, the user area is the total of 21 bytes

subtracted from the file area, and it seems that the last 1 byte of memory is not consumed. The end-of-

file code 1AH is well known as the end-of-file (EOF) code used by many operating systems.

In addition, the system automatically performs memory block transfer and changes in P1STT to

MEMEN so that unnecessary data does not occur between files. However, P0STT is not changed

unless the user makes a CLEAR statement, and the system side does not change it arbitrarily.

BASIC programs are stored in P0 to P9 in the program area, and the BASIC program method is

exactly the same as PB-100. The BASIC sample program in Listing 5 is stored as shown in Table 7.

Each line consists of the line length (1 byte), line number (2 bytes), space (1 byte), BASIC code

(variable length), and line end code (1 byte). The line length is the total number of bytes from the line

number to the line end code. If this is 0, it indicates the end of the program. The line number is 2 bytes

of little endian. Space is a space between the line number and the BASIC code, and is fixed with &

H20. A BASIC code is a character string in which a reserved word is converted to a 2-byte internal

code with big endian. There are reserved words that have processing destinations and no processing

destinations such as functions, and Tables 8 and 9 show the internal codes. The line end code is fixed

at 0.

Kapitel: III. Internal Information

3-2 BASIC Related Seite 84

Listing 5. BASIC Sample Program

100 REM Sample

110 'Program

120 CLS

130 PRINT "Hello"

140 END

Table 7. Memory Contents of Listing 5

LEN

1byte

LNUM

2bytes

SPC

1byte

Program Statement

Variable Length

EOL

1byte

0D

13

64 00

100
20

04 A9

REM
20

53

S

61

a

6D

m

70

p

6C

l

65

e
00

0D

13

6E 00

110
20 02 20

50

P

72

r

6F

o

67

g

72

r

61

a

6D

m
00

06

6

78 00

120
20

04 71

CLS
 00

0D

13

82 00

130
20

04 A3

PRINT

twenty

two

"

48

H

65

e

6C

l

6C

l

6F

o

twenty two

"
00

06

6

8C 00

140
20

04 87

END
 00

00

0

Kapitel: III. Internal Information

3-2 BASIC Related Seite 85

Table 8. Internal Code with Processing
Destination Address

CODE
BASIC

Command

Processing

Destination

0449H GOTO 368AH

044AH GOSUB 3620H

044BH RETURN 3663H

044CH RESUME 3ACBH

044DH RESTORE 42EBH

044EH WRITE # 5517H

0450H CONT 35ADH

0452H SYSTEM 51BAH

0453H PASS 525CH

0455H DELETE 3CDDH

0457H LIST 3D26H

0458H LLIST 3D21H

0459H LOAD 4753H

045AH MERGE 474BH

045CH RENUM 43DAH

045DH TRON 3617H

045FH TROFF 3614H

0460H VERIFY 474FH

0463H POKE 3A23H

0469H CHAIN 4762H

046AH CLEAR 53A8H

046BH NEW 4594H

046CH SAVE 4736H

046DH RUN 352CH

046EH ANGLE 3929H

046FH EDIT 58B8H

0470H BEEP 43C7H

0471H CLS 2ADFH

0472H CLOSE 46B0H

0476H DEF 397DH

0478H DEFSEG 3A3AH

047CH DIM 3A4AH

0480H DATA 0B9BH

0481H FOR 36F9H

0482H NEXT 383BH

0485H ERASE 3A81H

0486H ERROR 2BA8H

0487H END 3520H

048BH FORMAT 7F0FH

048DH IF 38BBH

048EH KILL 7F1EH

048FH LET 2EA2H

0490H LINE 3E26H

0491H LOCATE 39FAH

0496H NAME 7F35H

0497H OPEN 45DFH

0499H OUT 2BA8

049AH ON 3B71H

049FH CALCJMP 542CH

04A3H PRINT 3EF1H

04A4H LPRINT 3EECH

04A5H PUT 2BA8H

04A8H READ 42A0H

04A9H REM 0B9BH

04ACH SET 532AH

04ADH STAT 4322H

04AEH STOP 3500H

04B0H MODE 52A2H

04B2H VAR 3BEBH

04B5H FILES 7F87H

Kapitel: III. Internal Information

3-2 BASIC Related Seite 86

Table 9. Internal Code without
Processing Destination

CODE BASIC Function

054FH ERL

0550H ERR

0551H CNT

0552H SUMX

0553H SUMY

0554H SUMX2

0555H SUMY2

0556H SUMXY

0557H MEANX

0558H MEANY

0559H SDX

055AH SDY

055BH SDXN

055CH SDYN

055DH LRA

055EH LRB

055FH COR

0560H PI

0561H DSKF

0563H CUR

0567H FACT

0569H EOX

056AH EOY

056BH SIN

056CH COS

056DH TAN

056EH ASN

056FH ACS

0570H ATN

0571H HYPSIN

0572H HYPCOS

0573H HYPTAN

0574H HYPASN

0575H HYPACS

0576H HYPATN

0577H LN

0578H LOG

0579H EXP

057AH SQR

057BH ABS

057CH SGN

057DH INT

057EH FIX

057FH FRAC

0581H DEGR

0582H DMS

0586H PEEK

058AH EOF

058DH FRE

0590H ROUND

0592H VALF

0593H RAN#

0594H ASC

0595H LEN

0596H VAL

059BH HYP

059CH DEG

05A7H REC

05A8H POL

05AAH NPR

05ABH NCR

05ACH HYP

0697H DMS$

Kapitel: III. Internal Information

3-2 BASIC Related Seite 87

069BH INPUT

069CH MID$

069DH RIGHT$

069EH LEFT$

06A0H CHR$

06A1H STR$

06A3H HEX$

06A8H INKEY$

0747H THEN

0748H ELSE

07B6H TAB

07BBH ALL

07BCH AS

07BDH APPEND

07C0H STEP

07C1H TO

07C2H USING

07C3H NOT

07C4H AND

07C5H OR

07C6H XOR

07C7H MOD

Kapitel: III. Internal Information

3-2 BASIC Related Seite 88

F0 to F9 in the file area are general-purpose files that can be used as input and output destinations for

C and CASL source files and BASIC. The data storage format is exactly the same as a general OS such

as MS-DOS. For example, the file in Listing 6 is stored in memory as shown in Table 10. The line feed

code is ODH, 0AH, and the end-of-file code is 1AH, which is exactly the same as MS-DOS. The list

of

programs B-1. CHKPFAV4.BAS for checking programs and file areas is shown, so you can use this to

check the contents of this section yourself.

Listing 6.

Sample file

HELLO, WORLD!

Table 10. Memory storage format in Listing 6

Data

48

H

45

E

4C

L

4C

L

4F

O

2C

,

57

W

4F

O

52

R

4C

L

44

D

21

!

0D

CR

0A

LF

1A

EOF

Storage Format of Variable Data

When variables are used in program execution, CAL mode, etc., numerical variables and character

variables that have not been registered in the variable table, that is, for the first time, are automatically

registered and instantiated by the BASIC system. Also, array variables cannot be instantiated

automatically by the BASIC system , and the user must intentionally declare and instantiate them with

a DIM statement (probably to prevent unnecessary memory consumption). Figure 3 shows the

situation of materialization and storage in the BASIC work area as described above.

Kapitel: III. Internal Information

3-2 BASIC Related Seite 89

Figure 3. FX-870P / VX-4 RAM Memory Map (BASIC)

In Figure 3, the three numbers at the top of the RAM written in blue are fixed values. IOBF, TOSDT,

P0STT, and DIREN written in red are values that can be set by the user, and BASIC cannot be

changed by themselves. 1CD0H to (IOBF-1) is a machine language area, and IOBF cannot normally

be changed, and 1CD0H and the machine language area is 0 bytes. However, the machine language

area can be secured by changing with extended CLEAR . P0STT and TOSDTT can be set with the

BASIC CLEAR statement, (P0STT-IOBF) is the work area size, (P0STT-TOSDT) is the variable area

size, and is actually the area where character variables and array character variables are stored. .

DIREN is the final RAM address of FX-870P / VX-4 and is not normally changed. Usually 1 byte, but

if you make a few bytes free by changing DIREN, you can use it to store high scores of the game. The

machine language area is destroyed when a C program is executed in C language mode, but the

data in the area after DIREN seems to be immune to destruction.

At this time, the BASIC system uses the I / O buffer from the IOBF and the memory for the character

operation stack, and uses the memory from the TOSDT as the variable table, numeric variable / array

numeric variable data area, GOSUB stack, and FOR stack in the reverse address direction. . Finally, it

is used as a data area for character variables and array character variables in the address forward

direction from TOSDT.

Jun Amano has already explained the basics of variable storage format (Ref. (13)).). This time, in

order to complete the information of the variable storage format , the analysis result using the program

B-2. OUTWRKV4.BAS that outputs the variable storage status of the work area to a file is described.

Tables 11 to 13 show the results of analyzing the storage format of the materialized variables by this

program.

The variable table is searched in the forward direction from the address stored in the DTTB. Data

Kapitel: III. Internal Information

3-2 BASIC Related Seite 90

addresses are (DTTB) to (TOSDT) -1. The data format of the variable table is variable attribute (1

byte), number of characters of variable name (1 byte), variable name (variable length), pointer to

actually store data (2 bytes). (Number of characters of variable currently being searched) + 4 should be

added to (address of variable attribute currently being searched). In addition, the variables are searched

in the reverse order of the materialized variables, and the last materialized variable is first hit in the

search. There are four types of variable attributes: character variables, numeric variables, array

character variables, and array numeric variables, which are 20H, 28H, A0H, and A8H, respectively.

Therefore, four variable types can exist simultaneously with the same variable names as A $, A, A $ (),

and A ().

The numeric data area is an area with addresses (TONDT) to (DTTB) -1, and stores data for numeric

variables and array variables. Basically numeric data is packed and little endian encoded BCD floating

point formatHowever, in the case of an array variable, the pointer of the variable table points to the

declaration information of the array numeric variable. The first byte is the dimension of the array

variable, and the maximum value of each subscript is arranged for each array dimension by 2 bytes.

Multidimensional array variables of two or more dimensions must be managed with a one-dimensional

subscript inside the BASIC system, but they are unified so that the rightmost subscript is inside the

loop. That is, if DIM A (M N , M N-1 , ..., M 1) is declared , one of the array numeric variables written

as A (I n , I n-1 , ..., I 1) You can think of the subscripts of the elements as being unified in the

expression inside . In addition, for array numeric variables, there is basically no memory size change

after securing the data storage area as declared in the DIM part in the numeric data area (initial value

0), so BASIC system management is a character array variable. It is easier compared to

The character variable data area is an address area from (TOSDT) to (PTSDT) -1, and stores data for

character variables and array character variables. In the case of a character variable, the first byte

pointed to by the variable table pointer is the number of characters in the data stored in the variable,

and character string data of that number of characters is stored subsequently. In the case of an array

character variable, the declaration information of the array numeric variable is contained in the same

manner as the array numeric variable. However, the one-dimensionalization inside a multidimensional

array is the same as a numeric array variable, but each numeric data is 8 bytes, but the character

variable is variable, so the internal one-dimensional subscript is searched from 0. The target index

must be reached, and access is less efficient than array numeric variables. In addition, substitution and

deletion of character data (substitution of "") does not leave unnecessary data in the character variable

data area, and the BASIC system automatically manages memory. In other words, when the data of a

character variable or array character variable is changed and the size of the character variable data area

needs to be changed, it is materialized after that variable (in the case of an array variable, the one-

dimensional subscript is larger Subscript) data is shifted by the necessary amount, and the variable

table pointer is also shifted by the shift amount. Therefore, the load of the BASIC system due to the

substitution of the character variable is smaller for the character variable (character array

variable) that is materialized last.

Kapitel: III. Internal Information

3-2 BASIC Related Seite 91

Also, instead of clearing the work area contents with CLEAR, only the pointers are changed. Variable

initialization is performed when a variable is registered in the variable table.

The above analysis results are summarized as follows.

Table 14 shows the memory usage of variables.

Table 14. Variable Memory Usage

Variable type
Variable Table

Usage (byte)

Data Storage

Destination
Data storage size (byte)

Numeric

variable

(Number of

characters in

variable name) + 4

Numerical data

area

8

Array

numeric

variables

1+ (number of dimensions) x 2+ (number of

array elements) x 8

Character

variable Character

variable data

area

(Number of characters in the assigned

string) + 1

Array

numeric

variables

1 + (number of dimensions) x 2+ (number

of array elements) + (number of characters

in the string assigned to all array elements)

In addition, the following precautions are effective for speeding up BASIC.

• The registration order of the variable table and the search order of the variable table are

reversed, and the search time is shorter for the variables registered in the variable table later.

Therefore, it is effective for speed-up to start using frequently used variables as much as

possible.

• When it is necessary to change the size of the character variable data area by changing the data

of a character variable or array character variable, the data is materialized after that variable (in

the case of an array variable, it is a large subscript with a one-dimensional internal subscript).

Must be shifted as much as necessary, and the variable table pointer must also be shifted by the

shift, which places a heavy load on the BASIC system. Therefore, using frequently used

character variables and character array variables as soon as possible is especially

effective for speeding up BASIC programs.

Kapitel: III. Internal Information

3-2 BASIC Related Seite 92

Table 11. Variable Table (DTTB) analysis Results

Address

(Hexadecimal)

Variable Table Data

Attribute

1byte

Word

Count

1byte

Variable Name

Variable Length

Pointer

2 Bytes

3A8A
20 01 53 EF 3A

Ch 01 S 3AEF

3A8F
28 03 53 54 30 ED 39

Nu 03 S T 0 39ED

3A96
28 02 4E 58 F5 39

Nu 02 N X 39F5

3A9C
28 02 53 54 FD 39

Nu 02 S T 39FD

3AA2
28 02 41 44 05 3A

Nu 02 A D 3A05

3AA8
20 01 46 ED 3A

Ch 01 F 3AED

3AAD
28 01 4A 0D 3A

Nu 01 J 3A0D

3AB2
28 01 49 15 3A

Nu 01 I 3A15

3AB7
A0 03 51 57 45 D6 3A

AC 03 Q W E 3AD6

3ABE
A8 03 50 4F 49 1D 3A

AN 03 P O I 3A1D

3AC5
20 02 42 43 D0 3A

Ch 02 B C 3AD0

3ACB
28 01 41 82 3A

Nu 01 A 3A82

Table 12. Numerical Data Area (TONDT) Analysis Results

Address

(Hexadecimal)
Variable Table Data Remarks

Kapitel: III. Internal Information

3-2 BASIC Related Seite 93

39ED
00 00 00 00 16 48 41 10

ST0 value
14816

39F5
00 00 00 00 86 49 41 10

NX value
14986

39FD
00 00 00 00 29 48 41 10

ST value
14829

3A05
00 00 00 00 86 49 41 10

AD value
14986

3A0D
00 00 00 00 00 00 03 10

J value
Three

3A15
00 00 00 00 73 48 41 Ten

I value
14873

3A1D

02 02 00 03 00 DIM statement for array numeric variable

POI () Information declared in DIM POI

(2,3).

The first byte is the dimension. Defines

the maximum subscript value by 2 bytes.

2 2 Three

3A22
00 00 00 00 00 00 00 00

POI (0,0) value
0

3A2A
00 00 00 00 00 00 01 66

POI (0,1) value
-1E60

3A32
00 00 00 00 00 00 02 66

POI (0,2) value
-2E60

3A3A
00 00 00 00 00 00 00 00

POI (0,3) value
0

3A42
00 00 00 00 00 00 04 66

POI (1,0) value
-4E60

3A4A
00 00 00 00 00 00 05 66

POI (1,1) value
-5E60

3A52
00 00 00 00 00 00 06 66

POI (1,2) value
-6E60

3A5A
00 00 00 00 00 00 00 00

POI (1,3) value
0

3A62 00 00 00 00 00 00 08 66 POI (2,0) value

Kapitel: III. Internal Information

3-2 BASIC Related Seite 94

-8E60

3A6A
00 00 00 00 00 00 09 66

POI (2,1) value
-9E60

3A72
00 00 00 00 00 00 11 66

POI (2,2) value
-1E61

3A7A
00 00 00 00 00 00 00 00

POI (2,3) value
0

3A82
20 01 89 67 45

twenty

three
01 Ten

A value

1.234567890120

Kapitel: III. Internal Information

3-2 BASIC Related Seite 95

Table 13. Character Variable Data (TOSDT) Analysis Results

Address

(Hexadecimal)
TOSDT Data Remarks

3AD0
05 43 41 53 49 4F

BC $ value. The first byte is the number

of characters. 5 "CASIO"

3AD6

01 05 00 Information declared in DIM statement

DIM QWE (5) of array character variable

QWE $ ().

The first byte is the dimension. Defines

the maximum subscript value by 2 bytes.

1 Five

3AD9
00

QWE $ (0) value
"" (no data; null)

3ADA
06 50 4F 43 4B 45 54

The value of QWE $ (1).
6 "POCKET"

3AE1
00

QWE $ (2) value
"" (no data; null)

3AE2
08 43 4F 4D 50 55 54 45 52

The value of QWE $ (3).
8 "COMPUTER"

3AEB
00

QWE $ (4) value
"" (no data; null)

3AEC
00

QWE $ (5) value
"" (no data; null)

3AED
01 30

F $ value
1 "0"

3AEF
00

The value of S $ (4)
"" (no data; null)

PS

I would like to thank Jun Amano because I could not understand the variable storage format so far

without the website of Jun Amano.

Kapitel: III. Internal Information

3-3 Appendix Seite 96

3-3 Appendix

A-1. PB-1000 Memory Map

Figure A1. PB-1000 Memory Map

A memory map of Casio PB-1000 is shown in Figure A1 (Reference (11)). By switching the bank of

the address space from 8000H to FFFFH, the BANK 0 system ROM and the BANK 1 RAM

(extension RAM) are accessed. In addition, 0000H to 7FFFH are designed so that only BANK 1 can

be accessed even if another bank is specified, and addresses 0000H to 7FFFH of BANK 1 to 3 cannot

be accessed.

A-2. BCD floating point format and internal format

Casio's pocket computers, except for some logical operations, perform numerical calculations using

BCD floating-point data, and all numerical variables and array numerical variables are stored as BCD

floating-point data. PB-1000's BCD floating-point format and internal storage format are described by

Polish Piotor Piatek (Ref. (14)). However, there are places where explanation is insufficient and there

are places where it is difficult to understand.

First, to conclude, the data storage format for numeric data is

1. Casio's BCD floating-point data format,

2. Little endian encoding,

3. Packed Little endian (Packed little endian encoding)

It is easier to understand if you understand in the order

Kapitel: III. Internal Information

3-3 Appendix Seite 97

Figure A2. BCD floating-point data format (Casio)

In FX-870P / VX-4, the basic format of numeric data is a normalized decimal exponent with a

signed mantissa part of 13 digits and a signed exponent part of 2 digits.

That, (msgn) (m0). (M1) (m @ 2) · · · (m11) (m12) × 10 (Esgn) (E1) (E0)

It is expressed.Here, (msgn) and (esgn) are the sign of the mantissa part and the exponent part

(Exponetial part), respectively, and are + or-. Others are numbers from 0 to 9, the exponent part is 2

digits, and the mantissa part is normalized, so it is 1.000,000,000,000 to 9.999,999,999,999. By

following this rule, you can make a number such as

+1.123456789012 × 10 -25

In addition, 0 is expressed by setting all 0s to 0.

This number is expressed in BCD (Binary-Coded Decimal) with 18 digits of 9 bytes. At this time,

MSD (Most Siginificant Digit) is 0, and the next three digits (ss) (e1) and (e0) are a combination of the

sign and exponent part of the mantissa part (both sign and exponent mixture part), The mantissa part

carry (mc) is usually 0, and the remaining 13 digits are the mantissa part (m0). (M1) (m2) ... (m11)

(m12). Since the mantissa part is the original numerical value, there is no problem, but the sign /

exponent mixed part is given as follows.

The sign / exponent mixed part (ss) (e1) (e0) is first considered to be a decimal three-digit

number and is offset by +100 to the exponent part. The sign of the mantissa part is minus (-)

Only in some cases, you can think of +500.

For example, if the exponent part (esgn) (E1) (E0) = -25 and the mantissa sign (msgn) = +, then

(ss) (e1) (e0) = -25 + 100 = 075,

exponent part (esgn) If (E1) (E0) = +25 and the mantissa code (msgn) =-,

(ss) (e1) (e0) = + 25 + 100 + 500 = 625

The reason why the value is +500 is presumed to be that sign calculation of the mantissa part can be

performed simultaneously with exponent addition and subtraction in multiplication and division. For

example, when multiplying-, 500 and 500 are added together to become 1000, and the significand sign

is + at the same time.

Kapitel: III. Internal Information

3-3 Appendix Seite 98

The above description can encode numbers in BCDC floating point format. For example, -

1.123456789012 × 10 -29 is

05 71 01 12 34 56 78 90 12 in the BCD floating point format

If you can understand the BCD floating-point format, it becomes a CPU problem. FX-870P / VX-4

CPU HD61700 is a little endian system, so loading to the main register is performed in ascending

order from the least significant byte. For example, 05 71 01 12 34 56 78 90 12 is loaded as

12 90 78 56 34 21 01 71 05 from $ 0 to $ 8.

The load state to this register is the first explanation of Piotr Piatek's BCD format, and the original

BCD floating-point format is not specified, so the packed little-endian encoding state, which is the

memory storage format, is difficult to understand. ing.

Since MSD and (mc) are 0 in the original BCD floating point format, moving (e0) to (mc) and

shifting (ss) (e1) up one digit to reduce 1 byte • Little-endian encoding, which is stored in

memory using this method.

For example, little-endian encoded data 12 90 78 56 34 21 01 71 05 (numeric value: -1.123456789012

× 10 -29) is stored as

12 90 78 56 34 21 11 57 in the memory

In Figure B2, it seems that digit movement is complicated and difficult to understand in packed little

endin coding, but it can be seen that it is natural digit movement when considered in the original BCD

floating point format. In fact, this operation is performed when $ 0, $ 1, ..., $ 8 contains floating point

data.

DIUW $ 7 ; Digit Up of ($ 8, $ 7) pair

OR $ 6, $ 7
; $ 6 <-$ 6 or $ 7, where the upper digit of $ 7 and the lower one are equal to

(e0) and zero respectively.

LD $ 7, $ 8 ; $ 7 <-$ 8

Can be compressed. Conversely, compressed numeric data loaded from $ 0 to $ 7 from memory is

LD $ 8, $ 7 ; $ 8 <-$ 7

LD $ 7, $ 6 ; $ 7 <-$ 6

DIDW $ 8 ; Digit Down of ($ 8, $ 7)

AN $ 6, & H0F ; clear the upper digit of $ 6

It is reasonable to realize the original state.

The successor FX-890P / Z-1 CPU is also an x86-based 80186, little-endian CPU, and the storage

format in memory is the same.

The FX-3870P / VX-4 provides a program that displays the internal storage format of numeric data in

hexadecimal format in B-3 , so you can check the memory storage format yourself.

At the bottom of Fig. A2, Piotr Piatek explains the arrangement on the stack of numerical data on PB-

1000 explained by HP. He does not give a reason just by fact, but this stacking arrangement is for

reasons specific to HD61700. When saving $ 0 to $ 8 with BCD floating-point data to the user stack,

Kapitel: III. Internal Information

3-3 Appendix Seite 99

it can be accelerated by using multi-byte PUSH, but only up to 8 bytes are supported. Therefore, it is

necessary to push 1 byte separately. Therefore,

PHUM $ 7, 8 ; PushH User-stack Multibyte for ($ 7, ..., $ 0)

PHU $ 8 ; PusH User-stack for $ 8

Is saved in the user stack as shown in the figure. To pop the saved data,

PPU $ 8 ; PoP User-stack for $ 8

PPUM $ 0, 8 ; PoP User-stack Multibyte for ($ 7, ..., $ 0)

What should I do? Here, the register number is different between DIUW and DIDW, PHUM and

PPUM. This is also a specification unique to HD61700. When restoring packed little-endin encoded

data, the first two instructions are used.

LDW $ 7, $ 6 ; ($ 8, $ 7) <-($ 7, $ 6)

However, if $ 7 ← $ 6 and $ 8 ← $ 7 are executed, $ 6 is copied up to $ 8 of the most significant byte,

and the target operation is not achieved.

Finally, when pushing to the user stack,

PHU $ 8 ; PusH User-stack for $ 8

PHUM $ 7, 8 ; PushH User-stack Multibyte for ($ 7, ..., $ 0)

If you push $ 8 first, it will be packed in the normal order of $ 0, $ 1,…, $ 7, $ 8 from the low address

side of the stack. Whether the FX-870P and VX-4 are still using the PB-1000 is currently unknown, so

it is unclear.

PS: I would like to thank Piotr Piatek for not being able to understand the BCD floating-point format

so far.

Kapitel: III. Internal Information

3-4 BASIC Programs Seite 100

3-4 BASIC Programs

This time, in order to independently investigate the internal information of FX-870P / VX-4, several

programs were created and investigated. Below is a list of the main programs, a brief explanation of

the programs and how to use them. Such a program is unnecessary in nature, but it can be used as a

reference, such as output to a file.

B-1. CHKPFAV4.BAS: Check program area and file area
Listing B-1. CHKPFAV4.BAS

100 'CHKPFAV4.BAS

110 'check program and file area

120 '

130 'for FX-870P / VX-4

140 '

150 'program by 123

160 'since 30th, Oct., 2010.

170 '

190 '

200 INPUT "1:disp addrs, 2:disp one of P0-F9";MD

210 IF MD=2 THEN GOSUB 500 ELSE GOSUB 300

220 END

290 '*DISPADR:'disp addrs

300 POI=&H18A7:'addr of P0

310 PRINT "Addresses of P0-F9"

320 FOR I=0 TO 9

330 AD=POI:GOSUB 1000

340 PRINT "P";RIGHT$(STR$(I),1);":";HEX$(AD);" ";

350 POI=POI+2

360 NEXT

370 PRINT

380 FOR I=0 TO 9

390 AD=POI:GOSUB 1000

400 PRINT "F";RIGHT$(STR$(I),1);":";HEX$(AD);" ";

410 POI=POI+2

420 NEXT

430 'PRINT

440 AD=POI:GOSUB 1000

450 PRINT "MEMEN:";HEX$(AD)

Listing B-2. OUTWRKV4.BAS

000 ' OUTWRKV4.BAS

110 ' output data of work area of FX-870P/VX-4

120 ' to File F0-9

130 ' for FX-870P/VX-4

140 '

150 ' programmed by 123

160 ' since 30th, Oct., 2010.

170 '

180 ' S$ must be emobodied at lat for string data stability!!

190 '

200 ' Data input

Kapitel: III. Internal Information

3-4 BASIC Programs Seite 101

210 A=1.23456789012

220 BC$="CASIO"

230 DIM POI(2,3)

240 DIM QWE$(5)

250 FOR I=0 TO 2

260 FOR J=0 TO 2

270 POI(I,J)=(I*4+J)*(-1E60)

280 NEXT

290 NEXT

300 QWE$(1)="POCKET"

310 QWE$(3)="COMPUTER"

320 F$="0":AD=0:ST=0:NX=0:ST0=0:S$=""

490 ' Output work area to F0...9

500 INPUT "Output FileNumber";F$

510 RESTORE#("F"+F$)

520 WRITE#:'clear file

530 WRITE#"WORK AREA DATA"

540 ' TONDT(&H189F):numerical data

550 AD=&H189F:GOSUB 1000:ST=AD

560 AD=&H18A1:GOSUB 1000:NX=AD

570 WRITE#"TONDT:numerical data"

580 GOSUB 1100

590 ' DTTB(&H18A1):variable table

600 ST=NX

610 AD=&H18A3:GOSUB 1000:NX=AD

620 WRITE#"DTTB:variable table"

630 GOSUB 1100

640 ' TOSDT(&H18A3):string data

650 ST=NX

660 AD=&H18A5:GOSUB 1000:NX=AD

670 WRITE#"TOSDT:string data"

680 GOSUB 1100

690 ' PTSDT(&H18A5):free area of string

700 ST=NX

710 AD=&H18A7:GOSUB 1000:NX=AD

720 WRITE#"TOSDT:free area of string"

730 GOSUB 1100

740 END

990 '*GETAD:'get address

1000 AD=PEEK(AD)+PEEK(AD+1)*256

1010 RETURN

1090 '*OUTHEX

1100 ST0=ST AND &HFFF0

1110 S$=""

1120 FOR I=ST0 TO NX-1

1130 IF (I AND &HF)=0 THEN S$=HEX$(I)+":"

1140 IF I>=ST THEN S$=S$+" "+RIGHT$(HEX$(PEEK(I)),2) ELSE S$=S$+" "

1150 IF (I AND &HF)=15 OR I=NX-1 THEN WRITE# S$:S$=""

1160 NEXT

1170 WRITE#

1180 RETURN

1190 ' end of program

Kapitel: III. Internal Information

3-4 BASIC Programs Seite 102

• Since WRITE # cannot be output without line breaks, as in PRINT A $; in the PRINT

statement, the file is output after combining it into a character variable S $.

• For numeric variables and array numeric variables, changing the value only affects the data

contents, but for character variables and character array variables, if the contents change, the

pointer values and character variables stored in the variable table It changes to the state of

the data area. In order to minimize the impact, S $ whose contents change frequently in the

program is used last in the program and registered in the variable table. In this way, other

character variables and array variables are free from the influence of dynamic fluctuation of

character variable data caused by program operations.

There are two ways to operate the program.

• Execute CLEAR (the CLEAR command may be placed at the top of the program), clear the

variables, and then simply execute RUN.

The output results are useful for understanding how variables are stored. However, the

content of the character data area of S $ (the last 1 byte of the TOSDT area of the output

data) is not 0 but contradicts, but is actually 0 (S $ = "").

•

Executes RUN500

after assigning character variables and deleting the contents (substituting "") . Thereby, the

dynamic change of the character variable data area can be confirmed.

Listing B-3. CHKAV4.BAS: Numerical data of numerical variable A is displayed in binary (for

BCD floating point format investigation)

Listing B-4. CHKAV4.BAS

100 'CHKAV4.BAS

110 'check A, numerical variable

120 'to inspcet the inner represenation

130 'for FX-870P, VX-4

140 ' programmed by 123

150 ' since 28th,Oct.,2010

200 AD=&H18A1

210 DTTB=PEEK(AD)+PEEK(AD+1)*256

220 AD=&H18A3

230 TSDT=PEEK(AD)+PEEK(AD+1)*256: 'TOSDT

240 '

250 FOR AD=DTTB TO TSDT-1

260 IF PEEK(AD)=&H28 AND PEEK(AD+1)=1 AND PEEK(AD+2)=&H41 THEN 310

270 NEXT

280 PRINT "Failed to find var A!"

290 END

300 '

310 AD=PEEK(AD+3)+PEEK(AD+4)*256

320 PRINT "A= ";A

330 FOR II=0 TO 7

340 PRINT RIGHT$(HEX$(PEEK(AD+II)),2);" ";

350 NEXT

360 PRINT

370 END

380 ' end of program

Kapitel:

3-4 BASIC Programs Seite 103

Examine the variable table of DTTB to TOSDT in the system area and output the internal format of the

value of numeric variable A in hexadecimal. This allows you to check the storage format of numeric

variables in memory.

In the FX-890P / Z-1 successor to FX-870P / VX-4, A is a fixed variable ("Z-1 / FX-890P Utilization

Research"), so without examining the variable table, The program is simple because it only outputs

the contents of a fixed address. For reference, the equivalent program for FX-890P / Z-1 is shown in

List B-3. The reason why I used II instead of I in the FOR to NEXT loop is because I was not able to

use I because the original program targeted not only A but also variables A to Z. It is.

Listing B-5. CHKAZ1.BAS (for FX-890P / Z-1)

000 'CHKAZ1.BAS

110 'check A, numerical variable

120 'to inspcet the inner represenation

130 'for FX-890P, Z-1

140 'program by 123

150 'since 28th, Oct., 2010

200 AD = & H196F

210 PRINT "A ="; A

220 FOR II = 0 TO 7

230 PRINT RIGHT $ (HEX $ (PEEK (AD + II)), 2); "";

240 NEXT

250 PRINT

260 END

270 'end of program

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 104

While the BASIC Manual part was shown very well, the C-Manual

part is not executed on the Japanese website. On the Internet and in

books enough references to look up the C language (see operating

instructions "Introduction to C programming Casio PC-2000C").

The commands from the original manual are listed here using screenshots.
Despite the Japanese characters integrated as a result, the existing command
set can be recognized and the examples also show how they are used. For
further interest you can use it to experiment and compare with other C manuals.

4-1 Sides from the Original Manual:

Starts C with ON / Shift / C →

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 105

the C-Commands list

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 106

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 107

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 108

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 109

Kapitel: IV. C - Referenz

4-1 Sides from the Original Manual: Seite 110

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 111

4-2 The C-Code in Original Manual

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 112

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 113

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 114

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 115

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 116

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 117

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 118

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 119

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 120

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 121

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 122

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 123

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 124

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 125

Kapitel: IV. C - Referenz

4-2 The C-Code in Original Manual Seite 126

Kapitel: V. F:COM

 Seite 127

F.COM Begin

over RS232

Kapitel: V. F:COM

 Seite 128

Kapitel: V. F:COM

 Seite 129

Save to (F)

Merge Files

Kapitel: VI. STAT

 Seite 130

STAT Begin

Select Modi

Input Data

Kapitel: VI. STAT

 Seite 131

List Data

Delete Data

Extimation of x

Training Board

Kapitel: VII. HD61700 Cross Assembler

Table of Contents Seite 132

Table of Contents

• 1. HD61700 Cross Assembler
• 1-1. Assembling method
• 1-2. Assembler options
• 1-3. Execution of output format and machine language

• 1-3-1. BAS format
• 1-3-2. PBF format
• 1-3-3. QL format

• 1-3. Error messages
• 2. Architecture

• 2-1. Features
• 2-2. Register configuration

• 3. Assembler
• 3-1. Assembler format
• 3-2. Pseudo instructions
• 3-3. Program points
• 3-4. Mnemonic format

• 4. Mnemonic
• 5. Instruction set table
• 6. Appendix

• 6-1. Output format and loader (BAS format, PBF format, QL format)
• 7. References and links
• 8. Figure
• 9. Revision information

Kapitel: VII. HD61700 Cross Assembler

List of Pseudo Instructions Seite 133

List of Pseudo Instructions

Pseudo Instructions

ORG (Origin), START ･ ･ ･
(Start),

EQU ･ ･ ･
(Equivalent),

DB ･ ･ ･ (Define
Byte),

DW ･ ･ ･ (Define Word)

DS ･ ･ ･ (Define
Size),

LEVEL ...
(Level),

#IF ･ ･ ･ #ELSE ---
#ENDIF

#INCLUDE #INCBIN ･ ･ ･ (INClude
BINary)

#NOLIST, #LIST,
#EJECT

#KC, #AI, #EU

List of Registers

General-Purpose 8-bit Register

$ 0, $ 1, ･ ･ ･, $ 31 ･ ･ ･ (Main
Registers)

16-bit Register

PC ･ ･ ･
(Program
Counter)

SSP (Syatem Stack
Pointer)

USP (User Stack Pointer) IX, IY, IZ (Index
Registers)

Specific Index Register and flag Register

SX, SY, SZ
(Specific Index
Registers)

F ･ ･ ･ ･ (Flag
Registers)

Status Register

IE ･ ･ ･
(Interrupt
Enable Register)

IA (Interrupt Select
and Key Output
Register)

UA (High-Order Address
Specification Register)

No mnemonic
(Display Driver
Control Register)

PE ･ ･ ･ (Port
Data Direction
Register)

PD ･ ･ ･ (Port
Data Register)

TM ･ ･ ･ (Timer
Data Register)

IB (Interrupt Control and
Memory Bank Range
Configuration Register)

KY ･ ･ ･ (Key Input
Register)

Kapitel: VII. HD61700 Cross Assembler

List of Mnemonics Seite 134

List of Mnemonics

Transfer Instruction (8 bits)

LD ･ ･ ･ (Load), LDI ･ ･ ･ (Load
Increment),

LDD ･ ･ ･ (Load
Decrement),

LDC (Load Check), ST ･ ･ ･ (Store)

STI ･ ･ ･ (Store
Increment),

STD ･ ･ ･ (Store
Decrement),

PPS ･ ･ ･ (Pop by
System stack
pointer),

PPU ･ ･ ･ (Pop by
User stack pointer),

PHS ･ ･ ･ (Push by
System stack
pointer)

PHU ･ ･ ･ (Push by
User stack pointer),

GFL ･ ･ ･ (Get Flag), PFL (Put Flag), GPO ･ ･ ･ (Get
Port),

GST ･ ･ ･ (Get
Status)

PST ･ ･ ･ ･ (Put
Status),

STL (Store data to
LCD),

LDL (Load data from
LCD),

PPO ･ ･ ･ (Put LCD
control Port),

PSR (Put Specific
index Register)

GSR ･ ･ ･ (Get
Specific index
Register)

Transfer Instruction (16 bits)

LDW ･ ･ ･ (Load
Word),

LDIW ･ ･ ･ (Load
Increment Word),

LDDW ･ ･ ･ (Load
Decrement Word),

LDCW ･ ･ ･ (Load
Check Word),

STW ･ ･ ･ (Store
Word)

STIW ･ ･ ･ (Store
Increment Word),

STDW ･ ･ ･ (Store
Decrement Word),

PPSW ･ ･ ･ (Pop by
System stack pointer
Word),

PPUW ･ ･ ･ (Pop
by User stack
pointer Word),

PHSW ･ ･ ･ (Push
by System stack
pointer Word)

PHUW ･ ･ ･ (Push
by User stack
pointer Word),

GRE ･ ･ ･ (Get
Register),

PRE (Put Register), STLW ･ ･ ･ (Store
Word data to LCD),

LDLW ･ ･ ･ (Load
Word data from
LCD)

PPOW ･ ･ ･ (Put
LCD control Port
Word),

GFLW ･ ･ ･ (Get Flag
Word),

GPOW ･ ･ ･ (Get
Port Word),

PSRW (Put Specific
index Register
Word),

GSRW ･ ･ ･ (Get
Specific index
Register Word)

Arithmetic Instructions (8 bits)

INV ... (Invert), CMP (Complement), AD ･ ･ ･ (Add), SB (Subtract), ADB ･ ･ ･ (Add
BCD)

SBB (Subtract BCD), ADC ... (Add Check), SBC (Subtract Check), AN ･ ･ ･ (And), ANC (And Check)

NA ･ ･ ･ (Nand), NAC ･ ･ ･ (Nand
Check),

OR ･ ･ ･ (Or), ORC ･ ･ ･ (Or
Check),

XR ･ ･ ･ (Exclusive
Or)

XRC ･ ･ ･ (Exclusive
Or Check)

Arithmetic Instructions (16 bits)

INVW ･ ･ ･ (Invert
Word),

CMPW ･ ･ ･
(Complement
Word),

ADW ･ ･ ･ (Add
Word),

SBW ･ ･ ･
(Subtract Word),

ADBW ･ ･ ･ ((Add
BCD Word)

Kapitel: VII. HD61700 Cross Assembler

List of Mnemonics Seite 135

SBBW ･ ･ ･
(Subtract BCD
Word),

ADCW ･ ･ ･ (Add
Check Word),

SBCW ･ ･ ･ (Subtract
Check Word),

ANW ･ ･ ･ (And
Word),

ANCW ･ ･ ･ ･
(And Check Word)

NAW ･ ･ ･ (Nand
Word),

NACW ･ ･ ･ (Nand
Check Word),

ORW ･ ･ ･ (Or
Word),

ORCW ･ ･ ･ (Or
Check Word),

XRW ･ ･ ･
(Exclusive Or
Word)

XRCW ･ ･ ･
(Exclusive Or Check
Word)

Rotate shift Instruction (8 bits)

ROU ･ ･ ･ ･ (Rotate
Up),

ROD ･ ･ ･ (Rotate
Down),

BIU ･ ･ ･ (Bit Up), BID ･ ･ ･ (Bit
Down),

DIU (Digit Up)

DID ･ ･ ･ (Digit
Down),

BYU ･ ･ ･ (Byte Up), BYD ･ ･ ･ (Byte
Down)

Rotate shift Instruction (16 bits)

ROUW ･ ･ ･ (Rotate
Up Word),

RODW ･ ･ ･ (Rotate
Down Word),

BIUW ･ ･ ･ (Bit Up
Word),

BIDW ･ ･ ･ (Bit
Down Word),

DIUW ･ ･ ･ (Digit
Up Word)

DIDW ･ ･ ･ (Digit
Down Word),

BYUW ･ ･ ･ (Byte Up
Word),

BYDW ･ ･ ･ ･ (Byte
Down Word)

Jump / Call Instructions

JP ･ ･ ･ (Jump), JR ･ ･ ･ (Relative
Jump),

CAL ･ ･ ･ (Call), RTN ･ ･ ･ ･
(Return)

Block Transfer / Search Instructions

BUP ... (Block Up), BDN ･ ･ ･ (Block
Down),

SUP (Search Up), SDN (Search
Down),

BUPS ･ ･ ･ (Block
Up & Search)

BDNS ･ ･ ･ (Block
Down & Search)

Special Instructions

NOP ･ ･ ･ (No
Operation),

CLT ･ ･ ･ (Clear
Time),

FST ･ ･ ･ (Fast
mode),

SLW ･ ･ ･ (Slow
mode),

OFF ･ ･ ･ (Off)

TRP ･ ･ ･ (Trap), CANI ･ ･ ･ ･ (Cancel
Interrupt),

RTNI ･ ･ ･ (Return
from Interrupt)

Multibyte Transfer Instruction (2 to 8 bytes) not Disclosed

LDM ... (Load Multi
byte),

LDIM ･ ･ ･ (Load
Increment Multi
byte),

LDDM ･ ･ ･ (Load
Decrement Multi
byte),

LDCM ･ ･ ･ (Load
Check Multi byte),

STM ･ ･ ･ (Store
Multi byte
memory)

STIM (Store
Increment Multi
byte),

STDM ･ ･ ･ (Store
Decrement Multi
byte),

PPSM ･ ･ ･ (Pop by
Syatem stack pointer
Multi byte),

PPUM ･ ･ ･ (Pop
by User stack

PHSM ･ ･ ･ (Push
System stack

Kapitel: VII. HD61700 Cross Assembler

List of Mnemonics Seite 136

pointer Multi
byte),

pointer Multi
byte)

PHUM ･ ･ ･ (Push
User stack pointer
Multi byte),

STLM (Store LCD
data port Multi
byte),

LDLM (Load LCD data
port Multi byte),

PPOM ･ ･ ･ (Put
LCD control port
Multi byte),

PSRM (Put Specific
index Register
Multi byte)

Multibyte Arithmetic Instruction (2 to 8 bytes) not Disclosed

INVM ･ ･ ･ (Invert
Multi byte),

CMPM (Complement
Multi byte),

ADBM ･ ･ ･ (Add
BCD Multi byte),

ADBCM ･ ･ ･ ((Add
BCD Check Multi
byte),

SBBM ･ ･ ･
(Subtract BCD
Multi byte)

SBBCM ･ ･ ･
(Subtract BCD
Check Multi byte),

ANM ･ ･ ･ (And
Multi byte),

ANCM ･ ･ ･ (And
Check Multi byte),

NAM ･ ･ ･ (Nand
Multi byte),

NACM ･ ･ ･ (Nand
Check multi byte)

ORM (Or Multi
byte),

ORCM ･ ･ ･ (Or
Check Multi byte),

XRM ･ ･ ･ (Exclusive
Or Multi byte)

XRCM ･ ･ ･
(Exclusive Or Check
Multi byte)

Multi-byte Shift Instruction (2 to 8 bytes) not Disclosed

DIUM ･ ･ ･ (Digit
Up Multi byte)

DIDM ... (Digit Down
Multi byte),

BYUM ･ ･ ･ (Byte Up
Multi byte),

BYDM ･ ･ ･ ･ (Byte
Down Multi byte)

Kapitel: VII. HD61700 Cross Assembler

7-1 HD61700 Cross Assembler Seite 137

7-1 HD61700 Cross Assembler

HD61700 Cross assembler HD61 was developed by Ao. It is almost the same as the assembler built in

PB-1000 (upward compatibility), but the differences are as follows.

1. Label length is up to 16 characters and can be registered as long as memory allows. The code area can
be secured up to 64KB.

2. Not only address labels (for JR, JP, CAL instructions) but also numeric labels can be used with transfer
instructions.

3. Supports almost all orders of HD61700, including unreleased CASIO. The mnemonic can use both “AI-
assembler format” and “KC format”. (Mixing is also possible) From Rev 0.41, it also supports
mnemonics in EU format (Europe notation), and by #EU (or / eu) specification. Switchable from AI / KC
format to EU (Europe) format.

4. Second operation extension ($ 0, $ 30, $ 31, LD & JR) etc. can be specified by default. (OFF when the /
n option is specified)

5. The output format supports BASIC DATA statement format and PBF format (PBF format specifies / p
option).

6. Output a formatted list file (.lst).
7. Supports pseudo-instructions (DW, LEVEL, #if, #else, #endif, #include, etc.) not supported by PB-1000.

Assembling Method

HD61 is available in Windows and DOS versions, but execute the following command at each

command prompt.

HD61 [source file name] (option [/ n] [/ p] [/ q] [/ w] [/ tab] [/ r] [/ o filename] [(/ set) symbol =

value] [/ eu])

When executed, the specified file is assembled according to the option settings as shown in the

example below.

Assemble example

> hd61 hd61700.s [Enter]

HD61700 ASSEMBLER Rev 0.41

Input: hd61700.s

PASS 1 END

PASS 2 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

If normal, displays [ASSEMBLY COMPLETE, NO ERRORS FOUND] and exits. At this time, a .bas

file and an .lst file are generated. If any error occurs during assembly, display an error line and exit.

After Rev.0.09, when the source file name is 8 characters or more, a warning is displayed (the

assembly works normally). This means that the file name output to BAS (or PBF) will be a long file

name in consideration of use with models that support 8.3 file names such as PB-1000 / C and AI-

1000. Warning. (The function to automatically shorten the file name is not implemented)

Kapitel: VII. HD61700 Cross Assembler

7-1 HD61700 Cross Assembler Seite 138

Assembler Options

Although it can be omitted, the following options can be specified during assembly.

List of Assembly Options

Option Function

/ p Output in PBF format. (Default is output in BASIC DATA statement format)

/ q Output in QL (quick loader) format.

/ n Turn off optimization by specifying the second operation (default is ON)

/ w
Assemble for 16-bit addressing. (Optimization is fixed at LEVEL 0)
Outputs the assembly code corresponding to the 16-bit address for the
internal ROM.

/ tab Output the list file with TAB = 8.

/ r
Output relocate information file (* .roc).
Outputs information file for creating relocate format file used in FBF / VX-
MENU. Used when creating RR format and * .o / *. O2 format files.

/ o [filename]
Specify the file name to be output to the PBF / BAS format file header.
Default is not specified (automatic generation). > / TD>

(/ set) [symbol label name] =
[value / label name]

Define arbitrary symbol labels. / set can be omitted.

/EU
Set to assemble EU format (Europe format) mnemonics.
Even if pseudo instruction #EU is specified in the source, the same operation
is performed.

For the / p option, refer to 1-3-2.PBF format in 1-3. Executing the created program.

The / n option disables code optimization of transfer instructions for $ 0, $ 30, and $ 31, and outputs

code compatible with the PB-1000 built-in assembler.

Output code Example with / n Option

Option Setting Mnemonic Output Code Remarks

No / n option
(default)

LD $ 2, $ 30 02 42
When 2nd operation specification is ON = 2 byte
instruction is output

with / n option LD $ 2, $ 30 02 62 30
When the second operation specification is OFF = 3-
byte instruction is output

This is used when assembling a source that determines the address of the data area for the PB-1000, or

when assembling a program that changes the SIR using the PSR instruction. For details on the

instructions to be optimized and the output code, refer to 4. lst file output by assembling the

HD61700.s file attached to mnemonic or HD61

Kapitel: VII. HD61700 Cross Assembler

7-1 HD61700 Cross Assembler Seite 139

The / set option can be used to define arbitrary symbol labels at startup since Rev 0.23. This is done

using the # if ~ # else ~ # endif pseudo-instructions,

• When switching the assembly code for each model,
• When switching the assembly start address according to memory capacity

The symbol label value can be changed without modifying the source file. By using a batch file, output results
for each model can be obtained automatically. If the same label name is EQU declared in the source, the
value defined in / set takes precedence, so the definition in the source functions as the default value.
Format example) Specify the model name and start address from the command line.

HD61 SAMPLE.S / SET MODEL = PB1000 / SET BASE = 0x7000

Since Rev 0.28, you can omit the / set option and define any symbol with the description [symbol label name]
= [value / label name]. The following format example is exactly the same as the above format example (no
omission of / set) in terms of operation specifications.
Format example) Specify the model name and start address from the command line.

HD61 SAMPLE.S MODEL = PB1000 BASE = 0x7000

Execution of Output Format and Machine Language

The HD61 outputs one of the BAS, PBF, and QL format files as an option specified during assembly.

For each type of file, the machine language can be executed by placing the machine language in the

memory on the pocket computer according to the following procedure.

In the following sections, loading and execution of each type of file into memory will be explained,

focusing on FX-870P / VX-4.

BAS Format

(1) Assemble with HD61. Create a bas file. For the BAS format, see the appendix.
(2) Paste the contents of Trans.b attached to HD61 into the output bas file as a machine language

loader program.
For FX-870P and VX-4, leave line number 80 as a comment.

(3) Load the created program file into the pocket computer with F.COM.
(4) If it is loaded to the unused area of the system, nothing is required. Otherwise, in the case of FX-

870P and VX-4 , the machine language area is secured by extended CLEAR.
(5) When the loaded program is executed, the machine language code is placed in the memory.
(6) A machine language routine is called with MODE110 (execution address) .

In PB-1000 / C and AI-1000, it is not necessary to comment on line number 80 of Trans.b. In that case,

the machine language program is automatically saved by (5).

PBF Format

For the format of the PBF format, see the appendix.

For FX-870P, VX-4 (VX-3 has the same procedure):

(1) Assemble with / p option on HD61. Create a pbf file.
(2) A machine language area is secured on the pocket computer using the same method as the BAS

format.
(3) Run TransVX.bas attached to HD61 on the pocket computer. When executed, it stands by in the

RS232C reception state.

Kapitel: VII. HD61700 Cross Assembler

7-1 HD61700 Cross Assembler Seite 140

(4) Transfer the PBF file created in (1) to the pocket computer via RS232C.
(5) The binary code is automatically converted and the machine language code is placed in the

memory. When processing is complete, "Completed!" Is displayed.
(6) A machine language routine is called with MODE110 (execution address).

For PB-1000 / C and AI-1000:

(1) Assemble with / p option on HD61. Create a pbf file.
(2) A machine language execution area is secured on the pocket computer.
(3) JUN AMANO's PbfTOBin.bas is executed and the file name is "COM0: 7". (At 9600bps)
(4) Transfer the PBF file created in (1) to the pocket computer via RS232C.
(5) When execution is completed, an EXE (or BIN) file is automatically generated.

QL Format

 Quick loader data format devised by Mr. Ao.

The usage is as follows.

(1) Assemble with / q option on HD61. Create a ql file. For the QL format, see the appendix.
(2) Paste the output ql file to the quick loader described in “QL format” at the end of the book.

Add or modify code as appropriate.
(3) Load the created program file into the pocket computer with F.COM.
(4) If it is loaded to the unused area of the system, nothing is required. Otherwise, in the case of FX-

870P and VX-4 , the machine language area is secured by extended CLEAR.
(5) When the loaded program is executed, the machine language code is placed in the memory.
(6) A machine language routine is called with MODE110 (execution address) .

Kapitel: VII. HD61700 Cross Assembler

7-1 HD61700 Cross Assembler Seite 141

Error Message

The error messages displayed during assembly are as follows.

Error Message List

Error Message Error Contents

Invalid Source File Name. The source file cannot be opened.

Line Length is Too Long. The number of characters in one line has been exceeded.

Operand Length is Too Long. The number of operand characters has been exceeded.

LABEL Length is Too Long. The number of label characters has exceeded.

ORG Not Entry. There is no ORG instruction definition.

Operand Not Entry. No operand description.

EQU without Label. EQU has no label entry.

Illegal Operand. Operand description error.

START Already Defined. There are two or more START statements.

Illegal [,] The comma description is strange.

Illegal [''] or [(] or [)] Double coating / parentheses error.

LABEL Already Defined. There are two or more label descriptions.

LABEL Type Mismatch. Characters that cannot be used for labels.

Undefined LABEL. No label registration.

Operation Type Mismatch. No applicable instruction / Missing description method.

Operand Range Over. Operand value is out of range.

Jump Address Over. Relative jump is out of range.

Output Buffer Over Flow. Output buffer over.

Assemble Address Over Flow. Assemble address limit exceeded.

Execute Address Illegal.
The execution address is smaller than the first ORG
declaration.

Could not calculate. An operation error (division by 0, etc.) has occurred.

Illegal [#if]-[#endif] Nesting of # if ~ # else ~ # endif is abnormal.

Invalid Include File Name. The include file cannot be opened.

Could Not Nest Include. include nesting error.

Illegal Register Number. Abnormal main register number.

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 142

7-2 MPU Architecture

Features

• Decimal calculation possible
• 64KB of 256KB address space (UA / IB register control)
• High-speed processing (LCD display, calculation routine, etc.) with 16bit ROM (3072 words; 64KB?
• Low power consumption (800μA)
• Built-in 32x8RAM as main register. Access in 16bit units is also possible.

With extension of second / third operation, 8-64bit unit access is also possible.
• Built-in clock function (TM register)
• Key input terminal 12x11 + 1 (access by IA / KY register)
• Interrupt function (3 external terminals, KEY / pulse, ON terminal, 1 minute timer, TRP processing)
• 8-bit I / O port (I / O designation is controlled by PE register)
• LCD display control function (MPU built-in instruction PPO / STL / LDL)

Actually coding, the personal impression is as follows.

• Specific index registers and JR options have been introduced so that no single bit is wasted.
• The JR option is useful for speeding up loops in the algorithm.
• Instructions are arranged so that there is no space in the instruction set, but byte up / down

instructions (BYU, BYD, BYUW, BYDW, BYUM, BYDM), NAND instructions (NA, NAC, NAW, NACW,
NAM, NACM) Rather than carry addition / subtraction and arithmetic shift instructions, carry was
more desirable. BYU and BYD are instructions that simply put 0 in an 8-bit register, and they seem to
be completely meaningless just for the purpose of the beauty of the instruction system.

• Since the flag register F is unused 2 bits, I wanted a sign flag (although it was impossible on the
instruction set).

• I wanted a change of carry in 4 bit shift instructions (DIU, DID, etc.).
• There were no undefined values in the instruction set, and future extensibility was not considered.

Register Configuration

Has 32 8-bit registers, 6 16-bit registers, and multiple status registers.

1) Main register (8bit)

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 143

This is a RAM module built into the HD61700, specified by addresses 0 to 31.
In mnemonics, it is expressed with a "$" mark at the beginning. For example, $ 0, $ 1, ... $ 31. Access and
computation up to 64 bits in little endian format. In addition, by using a specific index register SIR (5bit),
indirect access in the form of $ SIR is also possible.
* Little endian is a method of arranging & H12345678 in memory and arranging & H78, & H56, & H34, &
H12 from the lower address. A typical CPU is x86.

2) Six 16-bit registers

• PC: Program counter (16bit)
• SSP: System stack pointer (16bit)

For system operations such as CAL, RTN, interrupt processing.
In addition, direct rewriting with the PRE instruction is possible with PUSH, POP and user programs.

• USP: User stack pointer (16bit)
Unrestricted stack pointer that can be used freely by user programs.
Operate with PRE, PHU, PPU.

• IX, IZ, IY: Index register (16 bits: Display format IR) A 16-bit data pointer used for various transfer
instructions.
The IY register can only be used as an end point pointer for block transfer / search instructions.

3) Specific index register and flag register

• SX, SY, SZ: Specific index register (5bit: Display format SIR)
By defining a specific main register in the SIR in advance using the PSR instruction, the target main
register can be transferred / calculated faster (code shortening), and indirect specifications such as $
SX, $ (SX) can be specified. Possible.
However, in the CASIO HD61700 system, it is assumed that SX = 31 ($ 31 specified), SY = 30 ($ 30
specified), and SZ = 0 ($ 0 specified) are defined at the initial stage and used as they are. When the
user changes, the following cautions are required.
(1) Disable interrupts while changing SIR.
(2) When returning to the ROM internal processing, when calling the ROM internal processing, return
the SIR to the o+riginal setting.
(3) Coding the optimization switch with OFF (LEVEL 0) specified.
* In the EU (Europe format), these registers are called short registers (SR) and are labeled # 0, # 1, and
2, respectively.

• F: Flag register (8bit: Display format F)
The internal bit configuration is as follows.

MSB LSB

Z C LZ UZ SW APO * *

• Explanation of each flag
1. Z: Zero flag When all bits of the operation result are 0, it is reset to 0, otherwise it is set to 1.

When Z = 1, it is called NZ: Non-zero.
2. C: Carry flag This bit is set to 1 when a carry or borrow occurs in the operation result, and 0

otherwise.
NC: Non-carry.

3. LZ: Lower digit zero flag If the lower 4 bits of the operation result are 0, it is reset to 0 and 1
otherwise.
NLZ / LNZ: Non-lower digit zero flag

4. UZ: Upper digit zero flag If the upper 4 bits of the operation result are all 0, it is reset to 0,
otherwise it is set to 1.
Negative forms such as other operation flags are not prepared as branch conditions.

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 144

5. SW: Power switch state flag Notifies the ON / OFF state of the power switch. ON: 1, OFF: 0
6. APO: Auto power off state flag 1 when the OFF command is executed with the power switch

turned on. 0 when the power is turned off.

4) Status register

• IE: Interrupt enable register (read / write)
Specify interrupt mask and conditions (edge / level, etc.) in 8 bits.

Bit 7 ----- Enable interrupt from / INT1 pin (enabled by 1)

Bit 6 ----- KEY, pulse interrupt enabled (enabled by 1)

Bit 5 ----- Enable interrupt from / INT2 pin (enabled by 1)

Bit 4 ----- 1-minute timer interrupt enabled (1 enables)

Bit 3 ----- Enable interrupt from / ON pin (enabled by 1)

Bit 2 ----- Enable interrupts from the Power On switch (enabled by 1)

Bit 1 ----- / INT1 pin interrupt edge specification (0: falling, 1 rising)

Bit 0 ----- / INT2 pin interrupt level specification (0: Low level, 1: High level)

• This register is completely cleared by a reset (RESET signal) operation.
Bits 0, 1, 5, 6, and 7 are cleared by the power OFF / OFF command, but bits 2 to 4 are maintained even
when the power is OFF.
The interrupt priority is as follows in descending order. When a higher priority interrupt occurs, the
interrupt is interrupted.

Priority 1 (IE <7>): Interrupt from INT1 pin

Priority 2 (IE <6>): KEY / pulse interrupt

Priority 3 (IE <5>): Interrupt from INT2 pin

Priority 4 (IE <4>): 1 minute timer interrupt

Priority 5 (IE <3>): Interrupt from / ON pin

Priority 6 (IE <2>): Interrupt from Power On switch

• IA: Interrupt Select and Key Output Register (read / write); Interrupt Select and Key Output Register

Bit 7 ------- KEY interrupt (1), pulse interrupt (0)

Bit 6 ------- Pulse interrupt signal (0: 256Hz, 1: 32Hz)

Bit 5 to Bit 4- PIN specification for KEY input (0: No specified PIN, 1: ONE PIN

specified, 2: TWO PIN specified, 3: ALL PIN specified)

Bit 3 to Bit 0- KEY output specification (0 to 12: ONE KEY output, 13: ALL KEY

output, 14, 15: undefined)

• * When controlling the key input with the assembler, set 13 (ALL KEY output request) to this register
and then use GRE KY, $ C5 to bit OR all keys to $ C5 / $ C5 + 1. The KEY scan code is read.
When specifying one key at a time, you can get a response according to each key matrix by executing
GRE KY, $ C5 after setting 0 to 12.

• UA: Upper address specification register (read / write); High-Order Address Specification Register
This register determines which bank each (pointer) register will access. The meaning of each bit is as
follows.

Bit 7, 6 ---- IZ register upper address specification (0 to 3)

Bit 5, 4 ---- IX register / main register upper address specification (0 to 3)

Bit 3, 2 ---- SSP, USP upper address designation (0 to 3)

Bit 1, 0 ---- PC upper address specification (0 to 3) *

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 145

It is cleared to 0 at RESET and cleared even when the power is turned off except for SSP /

USP. The contents of SSP and USP are saved even when the power is turned off.

* Only for the PC upper address specification bits (Bit 0 to Bit 1), there is a delay of one

instruction cycle for the result to be reflected after writing the value with the PST

instruction. This is because it is necessary to branch (JP / JR) or RTN after specifying the

PST instruction for an arbitrary bank. When operating this register, it is necessary to

disable interrupts. (In PB-1000 / FX-870P / VX-4 / VX-3 / AI-1000, when the user

program is called, the system side is set to disable interrupts. (You may not need to be

aware)

• Display driver control register (no write mnemonic)
Outputs control signals for sending display data and commands to the display driver.

Bit 7 ----- VDD2

Bit 6 ----- φ1, φ2 CLOCK ON (1), OFF (0)

Bit 5 ----- None (undefined)

Bit 4 ----- CE4

Bit 3 ----- CE3

Bit 2 ----- CE2

Bit 1 ----- CE1

Bit 0 ----- OP

• Except bit 6, the set value is Pin output with negative logic.
This register can be accessed with the undisclosed instruction PPO.

• Port status specification register PE (read / write)
Specify input / output for each port.

Bit 7 ----- Port7 (1: output, 0: input)

Bit 6 ----- Port6 (1: output, 0: input)

Bit 5 ----- Port5 (1: output, 0: input)

Bit 4 ----- Port4 (1: output, 0: input)

Bit 3 ----- Port3 (1: output, 0: input)

Bit 2 ----- Port2 (1: output, 0: input)

Bit 1 ----- Port1 (1: output, 0: input)

Bit 0 ----- Port0 (1: output, 0: input)

All bits are cleared to 0 by RESET and power OFF. (Input state)

• Port data register PD (read / write)
Data input / output of each port is performed according to the state specified in the PE register.

Bit 7 ----- Port7 data

Bit 6 ----- Port6 data

Bit 5 ----- Port5 data

Bit 4 ----- Port4 data

Bit 3 ----- Port3 data

Bit 2 ----- Port2 data

Bit 1 ----- Port1 data

Bit 0 ----- Port0 data

It cannot be initialized by RESET or power OFF. (Indefinite)

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 146

• Timer data register TM (read)
Stores the HD61700 built-in timer value. It can be reset (cleared to 0) by the CLT instruction and read
to any main register by the GST instruction. Depending on the timing of reading, there may be a
change point of the value (FFh can be read), so it is necessary to read twice when using.

Bit 7, 6 ---- 4-minute count (0-3)

Bit 0 to 5 ---- Count value for 60 seconds (0 to 59. It returns to 0 in 60 seconds. The 1-

minute timer interrupt is triggered by the 60th second (when it changes from 59 to 0))

• Note: CLT instruction reset (0 clear) does not work properly for the last 1/65536 seconds at 60 seconds
(when changing from 59 to 0). Therefore, in order to surely perform the reset operation, it is necessary
to execute the CLT instruction twice with a delay so as to avoid the above period. (Refer to the CLT
instruction for an example.)

• Interrupt control and memory bank range specification register IB (read / write) Not disclosed
Enable / disable power ON function by 1 minute timer (Bit 5), various interrupt status flags (Bit 4-0),
and specify the effective range of memory bank by UA with 2 bits (Bit 7, 6).

• Bit 7, 6- Specifies the bank switching start address (upper 2 bits) by UA.

• IB specified status UA register switching range
• 00XXXXXXB 0000-FFFF
• 01XXXXXXB 4000-FFFF
• 10XXXXXXB 8000-FFFF (PB-1000 default)
• 11XXXXXXB C000-FFFF

• Bit 5 ----- Power ON control by 1 minute timer 1: Permitted (ON) / 0: Prohibited (OFF)
• By turning this bit ON, the power ON function by the 1-minute timer is permitted while the power

is OFF.
• By using this function, the time can be updated even when the power is off.
• Bit 4 ----- IRQ1 interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
• Bit 3 ----- Pulse / key interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
• Bit 2 ----- IRQ2 interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
• Bit 1 ----- 1-minute timer interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
• Bit 0 ----- Interrupt status flag from / ON pin (read only 1: interrupt is occurring, 0: RTNI)

• Looking at the processing in the PB-1000 ROM, it is used in the following procedure, and it turns out
that the power ON control by 1 minute timer and the bank designation range by UA are fixed to &
H8000 to & HFFFF.

• 56 40 80 PST IB, & H80 ; Bit 5 is turned off (power on by 1 minute timer is prohibited),
• ; Fix the bank range to & H8000 to & hFFFF.
• <Set the timer control work area>
• 57 20 10 PST IE, & H10 ; Allow 1 minute timer interrupt
• 56 40 A0 PST IB, & HA0 ; Bit 5 ON (Allow power ON with 1 minute timer permission),

• ; Fix the bank range to & H8000 to & hFFFF. Access to this IB register is performed only on the PB-1000
/ C, and does not appear to be performed on the FX-870P / VX-4 / VX-3.
(Because the clock function is not supported and there is no need to specify the bank range)
* In the EU (Europe) format, this register is called CS.

• Key input register KY (16Bit: read)
Returns the 12-bit key input result (KI01 to KI12) and the external interrupt input level (undisclosed).

Bit 15 ------- Keyboard port Pin input (KI04)

Bit 14 ------- Keyboard port Pin input (KI03)

Kapitel: VII. HD61700 Cross Assembler

7-2 MPU architecture Seite 147

Bit 13 ------- Keyboard port Pin input (KI02)

Bit 12 ------- Keyboard port Pin input (KI01)

Bit 11 ------- IRQ1 input level (unreleased)

Bit 10 ------- IRQ2 input level (unreleased)

Bit 9 ------- Interrupt input level from / ON pin (not disclosed)

Bit 8 ------- Unknown use

Bit 7 ------- Keyboard port Pin input (KI12)

Bit 6 ------- Keyboard port Pin input (KI11)

Bit 5 ------- Keyboard port Pin input (KI10)

Bit 4 ------- Keyboard port Pin input (KI09)

Bit 3 ------- Keyboard port Pin input (KI08)

Bit 2 ------- Keyboard port Pin input (KI07)

Bit 1 ------- Keyboard port Pin input (KI06)

Bit 0 ------- Keyboard port Pin input (KI05)

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 148

7-3 Assembler

Assembler Format

• The description of the instruction in the instruction word format assembler is as follows.

• ([LABEL :]) [Mnemonic] [OP1] [, OP2] [, OP3] ･ ･ ･ ([; Comment])
A space or TAB is required between the mnemonic and operand 1 (OP1).
(In practice, space / TAB is not required except for some commands, but it is necessary in the
specification.)
Use commas to separate operand 2 and later.
Mnemonic / operand descriptions are not case sensitive.

• Label declarations and comments are optional.

• Numeric values support 8-bit integer types (IM8: 0 to 255) and 16-bit integer types (IM16: 0 to 65535).
In addition to decimal numbers, prefixes & H (hexadecimal) and & B (binary: available for HD61) are
also possible.

• Labels can be described up to 16 characters (5 characters for PB-1000). Available characters are "@",
"_", "A to Z", "a to z", "0 to 9".
The first character must be other than a number, and is different from mnemonics in that uppercase
and lowercase letters are distinguished. (PB-1000 is not case sensitive)
In addition to addressing labels, numeric labels can be defined with the EQU directive.
The defined label can be used with all operands for which a numeric value can be specified.

• Expressions and operators
The HD61 can use operations with labels or expressions (operand operations) as numeric operands.
Operand operations are not limited to specific instructions and can be used with all instructions that
use numeric values.
The operations are sequentially executed according to the following priority order.

Available operators (priority from top to bottom)

Priority Calculation Type Operator

High

↑

↓

Low

Unary operator
.H (or .U) upper 8 bits specified, .L (or .D) lower 8 bits specified,
.N bit inverted

Inversion of evaluation !

Parenthesis operation ()

Four arithmetic operations * Multiplication, / division,% remainder (MOD)

Four arithmetic operations + Addition,-subtraction

Logical operation & AND (may be #), | OR, ^ XOR

Relational (comparison)
operations

= Equal sign (equal),> <> = <= size comparison, <> inequality sign

Pseudo Instructions

HD61 supports the following pseudo-instructions.

Basically, it is compatible with the PB-1000 built-in assembler pseudo-instructions, but there are some

minor differences such as the use of labels and expressions.

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 149

Pseudo Instructions

• {} Indicates one of them. However, {} itself is not entered.
• [] Can be omitted. However, do not enter [] itself.

Pseudo-
instruc-

tion
No.

Pseudo-
instruction

Format Function

(1) ORG ORG [address |
LABEL | expression
]

Declare the address where code placement starts to the
assembler.
Multiple ORGs may be used in a program, but an ORG
declaration smaller than the assembly address at the described
location cannot be made.
This declaration must be written at the top of the program. (In
fact, it may be after START or EQU)
A label or expression can be used as an operand, but the value
must be determined at the time of use.

(2) START START [execution
start address |
LABEL | expression
]

Give the program execution start address.
Can be declared only once during the program.

(3) EQU LABEL : EQU [
number | LABEL |
expression]

Gives the numeric value of the operand for the declared label.
Label declaration cannot be omitted.
A label or expression can be used for the operand value, but the
value must be determined at the time of use.
In addition, a character string of up to 2 bytes can be specified
by enclosing with a quotation mark.
Example)
LABEL: EQU "AB"; Substitute & H4241. (Same as DB pseudo-
instruction, from left to lower and higher)

(4) DB [LABEL :] DB {
number | " string "
| LABEL |
expression } [, {
number | " string "
| LABEL |

expression } [, ･ ･ ･
]]

The numerical value (and character) string described after
operand 1 is stored in memory in bytes.
The label on the left side of the DB instruction can be omitted.
When specifying a character string, enclose it in double
quotations ["] or single quotations ['].
Operand value must be in the range of 0 to 255, and can be
described by a label or expression.
Example)
DB 1, 2, 3, "ABCDEF 0 1 2", & H20
DB 'ABCDEF'

(5) DW [LABEL :] DW {
number | LABEL |
expression } [, {
number | LABEL |

expression } [, ･ ･ ･
]]

The numerical value described after operand 1 is stored in
memory in word units.
Operands can use labels and expressions, but not strings.
This pseudo-instruction is not in PB-1000.

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 150

(6) DS [LABEL :] DS {
number | LABEL |
expression }

A number of bytes equal to the numerical value described in
operand 1 is secured in the code memory.
0 is stored in the reserved area. (Undefined data in the PB-1000
built-in assembler)
The label on the left side of DS can be omitted.
A label or expression can be used for the operand value, but the
value must be fixed.

(7) LEVEL LEVEL Numerical
value (0 or 1)

Controls optimization of transfer instructions for CASIO-specific
SIR settings (SX = 31, SY = 30, SZ = 0) during assembly.
At LEVEL 1, optimization is turned on and transfer instructions
for $ 31, $ 30, and $ 0 are optimized.
Turn off optimization at LEVEL 0 and output code compatible
with PB-1000 built-in assembler.
The default is LEVEL 1.
When changing SIR with the PSR instruction, LEVEL 0 must be
specified. (For details, refer to HD61 attachment HD61700.S)

(8) IF ~ ELSE ~
ENDIF

#IF [!] Expression
Description 1
[
#ELSE
Description 2
]
#ENDIF

If the value of operand # 1 of the #IF instruction is true (other
than 0), description 1 is validated and description 2 from #else
to #endif is invalidated.
If operand 1 is false (0), description 2 is valid. The part of (#ELSE
description 2) can be omitted.
The operator! [Reverse evaluation value] can be used in the
expression.
(The precedence of the! Operator is between the unary
operator and the parentheses.)
A label can be used in the expression, but the value must be
fixed.
IF ~ # ELSE ~ # ENDIF statements can be nested up to 255
levels.

(9) #INCLUDE #INCLUDE (file
name)

Include the file described in parentheses in operand 1 when
assembling.
When the assembler finds this statement, it stops assembling
the source file and assembles the file specified by #INCLUDE.
After assembling the specified file, resume assembling the
original source file.
#INCLUDE nesting is possible up to 256 levels.
If you recursively call an INCLUDE file that has already been
opened, an "Invalid Include File Name" error will occur.
By default, the list file is output even during #INCLUDE
processing. To control the list output during #INCLUDE, use the
NOLIST / # LIST pseudo-instruction described later.

(10) #INCBIN #INCBIN ({ file
name.BMP | file
name })

Include the binary file described in the parentheses of operand
1 when assembling.
When the assembler finds this sentence, it converts the
specified file into DB format as binary data and reads it.
If the address exceeds 64KB during conversion, the process
terminates with an error.
When a Windows bitmap format file (extension .BMP) is
specified, pixel data is converted into graphic data for LCD
display and read.
Only monochrome two-color format can be read. (Up to 64KB

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 151

size limit)
For other BMP formats, "Illigal Bitmap File Format" is displayed
and the process ends with an error.
If a file name with another extension (other than .bmp) is
specified, it is converted to DB format as continuous binary
data.

(11) #NOLIST,
#LIST,
#EJECT

#NOLIST
#LIST
#EJECT

Control output to list (.lst file).
#NOLIST command stops output of subsequent lines to the .lst
file.
Output with the #LIST command.
The #EJECT instruction outputs LINE FEED (& h0C). (The page
header is also output at the same time.)

(12) #KC
#AI
#EU

#KC
#AI
#EU

Specify mnemonic format (KC format / AI format / EU (Europe)
format). (Default is #AI specification)
By this specification, the subsequent grammar check process
operates according to each format.
When #EU is specified, EU (Europe) format mnemonics are
used. For details, refer to [◆ EU (Europe) mnemonic] in the next
section.
In the default #AI specification, if the third operand of the LDM
/ STM instruction is omitted when assembling, the following
warning is displayed to indicate that it has been interpreted in
KC format.
"WARNING: 'LDM' was interpreted to 'LDD' of the KC form."
This is due to the fact that the KC format LDM (LoaD Minus) and
STM (STore Minus) have the same mnemonic name as the AI
format LDM (LoaD Multi byte) and STM (STore Multi byte). .
(Determination of AI format or KC format by presence / absence
of third operand)
By specifying the pseudo-instruction '#KC', the warning is not
displayed.

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 152

Programming Points

Using optimization by $ 30, $ 31, $ 0

In the CASIO pocket computer (HD61700) system, $ 31 = 0 and $ 30 = 1 are always set, and in

principle, these settings are not changed.

Using these settings provides various benefits.

For example, when $ 2 is cleared to zero, it is normally done as follows.

LD $ 2, 0

Or

XR $ 2, $ 2

However, the following method is common for CASIO Pokekon using HD61700.

LD $ 2, $ 31 ; 0 (= $ 31) is assigned

The reason is that in the CASIO pocket computer (HD61700) system, SIR: specific index register is

fixed as SX = 31 ($ 31 specification), SY = 30 ($ 30 specification), SZ = 0 ($ 0 specification), these

(SX / SY This is because the transfer / calculation using / SZ) can reduce the instruction size and the

number of execution clocks by specifying the second operation.

In the above example, when assembled with LEVEL 1 specified, the first two become 3-byte

instructions, but the third instruction becomes a 2-byte instruction.

Conventional commands include the following.

LD $ 2, $ 30 ; 1 is assigned

AD $ 2, $ 30 ; Increment: +1

SB $ 2, $ 30 ; Decrement: -1

ADW $ 2, $ 30 ; Word increment: +1

SBW $ 2, $ 30 ; Word decrement: -1

LD $ 2, (IX + $ 31) ; Same operation as LD $ 2, (IX + 0)

ST $ 2, (IX + $ 31) ; Same as ST $ 2, (IX + 0)

For the same reason, when performing arbitrary operations, if $ 0 (or $ 0, $ 1 pair) is used as the

second operand, optimization by $ SZ is performed, and the instruction size and the number of

execution clocks are reduced. .

This optimization for $ SX = $ 31, $ SY = $ 30, and $ SZ = $ 0 is effective in almost all transfer /

operation systems between main registers.

For details on instructions that can be optimized, see 4. Mnemonic , HD61700.pdf attached to HD61,

or HD61700.S (and .lst).

In HD61, LEVEL 1 is specified as the default setting, and assembly is performed using CASIO

Pokekon system-compliant optimization (SIR setting is fixed to SX = 31, SY = 30, SZ = 0).

To turn off optimization for $ 31, $ 30, and $ 0, specify the '/ n' option when assembling or set LEVEL

0 using the LEVEL pseudo-instruction.

In that case, it is necessary to explicitly specify indirect with $ SX / $ SY / $ SZ for the instruction that

needs to be optimized. (Optimization by indirect specification using SIR works regardless of LEVEL

0/1)

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 153

Mnemonic Format

This section gives a brief description of each mnemonic format. If you are interested in details, please

refer to the lst file output after assembling HD61700.S.

KC Format Mnemonic

An example of the unpublished command format is "KC format".

The KC format is a mnemonic format published in Kota-chan's "KC-Disasemmbler" (reference (3)).

As with the “AI-assembler format” (reference (4)), almost all unpublished commands are supported.

The differences between the “AI-assembler” format and the “KC format” are as follows.

Differences between AI-assembler format and KC format

Order
AI - Assembler

Format
KC

format
Remarks

Decrement
instructions

LDD * LDM *

STD * STM *

Multibyte
instructions

** M ** W
In the AI-assembler format, the multibyte number is
described as ", IM3 ".
In KC format, write "(IM3)" in parentheses.

Refer to each mnemonic for details.
In Japan, the KC format was not as popular as the AI-assembler format.

• The AI-assembler (reference (4)), which appeared as the first HD61700 assembler, had a systematic
and easy-to-understand grammar, whereas the KC format uses multibyte instructions to enclose
multibyte numbers in parentheses. There were disadvantages in parsing.

• The fact that the systematic explanation of the KC format was not made in the first presentation (
reference (3)) seems to be one of the reasons why its spread was hindered.

The KC format was partly supported for the first time by the “FX-870P Assembler” (reference (5)) and fully
supported by the “X-Assembler” (references (6), (7)).
In this way, the KC format did not spread, but remained until the end.

In addition to the “AI-assembler format” and “KC format”, HD61 supports both unpublished instructions added
in “X-Assembler” in both formats. (There may be a subtle omission)

Rev0.41 and later also support DP format (described later).

EU (Europe) format
"EU format", a format used mainly within the European (Germany) community.
HD61 can be used after Rev0.41 by specifying #EU (or / eu option).

In Germany, the PB-1000 ROM disassembly list was published in a magazine with explanation in 1988, and
unofficially, an environment that supports this EU (Europe) format mnemonic (Pascal card for PB-2000) The
information about this mnemonic was widely known because it was provided.
This European mnemonic is said to contain unpublished information provided by CASIO (= close to CASIO
genuine notation) due to the publication timing of magazine articles in Germany, etc., and is a very interesting
notation.
(Since it was not confirmed by CASIO, it is unknown whether it is true)
On the other hand, the AI format / KC format has been analyzed and named by several analysts who have

Kapitel: VII. HD61700 Cross Assembler

7-3 Assembler Seite 154

nothing to do with CASIO through magazine articles in Japan, and the results are very wonderful.
EU format and AI format differ in the following points (1) to (6). For details, refer to the description of each
instruction.

Differences between AI / KC format and EU format

No. Difference
AI / KC
Format

EU
Format

Comment

(1) Specific index register: SIR
(Specific Index Register)

SX, $ SX
SY, $ SY
SZ, $ SZ

0
1
2

In the EU format, it is called short register: SR
(Short Registers).

(2) Register Name IB CS An undisclosed register in AI format, denoted as
IB, is denoted as CS in EU format.

(3) Undocumented Mnemonic PSR PRA PRA (Put Ram Address)

GSR GRA GRA (Get Ram Address)

STL OCB OCB (Output Casio Bus)

LDL ICB ICB (Input Casio Bus)

PPO PCB PCB (Put Casio Bus)

BUPS IM8 BUP
IM8

BDNS IM8 BDN
IM8

JP $ C5 JPW $
C5

JP ($ C5) JPW ($
C5)

(4) Multibyte instructions * M * L In the EU format, "L" (meaning long word?) Is
added to the end of the mnemonic for multibyte
instructions.

(5) Multibyte count 2-8 L2 to L8 In EU format, the same notation as AI format is
also possible.

(6) JUMP expansion Tag
expression

JR J. This tag can be omitted in AI / KC / EU format. In
the EU format, "JR" can also be used.

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 155

7-4 Mnemonic

This chapter explains the mnemonics of the HD61700. The operand symbols and mnemonics used in

mnemonics are shown below.

List of operand symbols used in mnemonics

Operand Symbol Comment

Main register $ C5 : $ 0, $ 1, ･ ･ ･, $
31

Hexadecimal representation of $ & H0, $ & H1, ･

･ ･, $ & H1F is also possible.

Specific index register SIR SX 5-bit

SY

SZ

Indirect specification of main
register by specific index register

$ SX | $ (SX) Main register indicated by SX (default: $ 31)

$ SY | $ (SY) Main register indicated by SY (default: $ 30)

$ SZ | $ (SZ) Main register indicated by SZ (default: $ 0)

Index register IR IX 16-bit
The IY register can only be used as an end point
pointer for block transfer / search instructions. IY

IZ

Stack pointer SSP System stack pointer (16-bit)

USP User stack pointer (16-bit)

Program counter PC Program counter (16-bit)

flag Z Zero flag

NZ Non-zero flag

C Carry flag

NC Non-carry flag

LZ Lower-digit zero flag

UZ Upper-digit zero flag

NLZ | LNZ Non lower-digit zero flag

Status register KY KEY input register (16-bit)

IE Interrupt enable register (8-bit)

IA Interrupt selection register (8-bit)

IB Interrupt control and bank control register (8-
bit); not disclosed

UA Upper address specification register (8-bit)

PD Port data register (8 bits)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 156

PE Port status specification register (8 bits)

TM Timer register (8 bits)

Numerical data IM3 : 2,3, ..., 8 3-bit direct value. Used to specify the number of
multibytes.

IM5 : 0 to 31 or & H0
to & H1F

5-bit direct value. Used for ADBM and SBBM.

IM8 : 0 to 255, or &
H00 to & HFF

8-bit direct value.

IM16 : 0 to 65535, or
& H0000 to & HFFFF

16-bit direct value.

Mnemonic Table - Transfer instruction (8 bits)

• {} Indicates one of them. However, {} itself is not entered.
• [] Can be omitted. However, do not enter [] itself.

Mnemonic Format Function Flag
Number of

Clocks
Description Example format

LD
(Load)

LD opr1
, opr2 [,
(JR)
LABEL]

opr1 ←
opr2

It does
not
change

- Transfer the contents of
opr2 to opr1.
Unreleased but with
jump extension.
By adding an address
label to operand 3
when a specific
combination of opr1
and opr2 is executed, a
relative jump is made
after execution of the
transfer.
Operand 3 and JR tag
can be omitted.
There are six types of
operand combinations
that can be used with
the LD instruction.
Refer to the following
for the applicability of
jump extension.

LD $ C5
, $ C5 [,
(JR)
LABEL]

opr1 @ $ C5
← opr2 @ $
C5

3 + 3 + 6 =
12
(JR: +3)

Transfer between main
registers

• LD $ 2, $ 0; $ 0
data transferred
to $ 2

LD $ C5
, ($ A)
[, (JR)
LABEL]

opr1 @ $ C5
← opr2 @
($ A)

$ A = $
SIR: 3 + 8 +
3 = 14
$ A = $ C5:

Transfer from external
memory to main
register (1)
$ A is $ C5, $ SIR.

• LD $ 2, ($ 0);
Transfer external
memory data
addressed to $ 0

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 157

3 + 3 + 8 +
3 = 17
(JR: +3)

opr2 is little endian and
2 bytes.
The bank is for the UA
register IX.

(lower) and $ 1
(upper) to $ 2

• LD $ 2, ($ SZ); SZ
= 0 by default, so
the same
operation as LD $
2, ($ 0) is
executed at high
speed

LD $ C5
, ({IX |
IZ} ± $
C5)

opr1 @ $ C5
← opr2 @
({IX | IZ} ± $
C5)

3 + 3 + 6 +
5 = 17

Transfer from external
memory to main
register (2)
Specification by index
register ± main register
(8 bits).
No jump extension.

• LD $ 2, (IX + $
31); Transfer
external memory
data addressed
to IX + $ 31 to $
2.

LD $ C5
, ({IX |
IZ} ±
IM8)

opr1 @ $ C5
← opr2 @
({IX | IZ} ±
IM8)

3 + 3 + 6 +
5 = 17

Transfer from external
memory to main
register (3)
Specification by index
register ± 8-bit
immediate value.
No jump extension.

• LD $ 2, (IX + 123);
Transfer external
memory data
addressed to IX +
123 to $ 2.

LD $ C5
, IM8 [,
(JR)
LABEL]

opr1 @ $ C5
← opr2 @
IM8

3 + 3 + 6 =
12
(JR: +3)

Transfer 8-bit
immediate data to the
main register

• LD $ 4,123; 123
transferred to $ 4

LD $ C5
, $ SIR [,
(JR)
LABEL]

opr1 @ $ C5
← opr2 @ $
SIR

3 + 6 = 9
(JR: +3)

Indirect transfer of
main register by specific
index register SIR
(undisclosed
instruction)
Compared with normal
register specification,
the instruction code is 1
byte shorter. (When
LEVEL 0 is specified)
As a result, the
execution clock is
shortened and used
frequently in ROM.
In the EU format, SX = #
0, SY = # 1, SZ = # 2, and
the JR tag can be
omitted and "J." can be
written.

• LD $ 4, $ SX; The
main register
value (8 bits)
indicated by $ SX
is transferred to
$ 4. By default, $
SX = $ 31 = 0.
EU format

• LD $ 4, # 0; LD $
4, $ SX

• LD $ 4, # 0,
J.LABEL;

LDI
(Load
Increment)

LDI $ C5
, (IR ±
A)

$ C5 ← (IR ±
A)
IR ← IR ± A
+ 1

It does
not
change

A = SIR: 3 +
6 + 5 = 14
A = $ C5: 3
+ 3 + 6 + 5

After the contents of
the external memory
with (IR ± A) as the
address are transferred

• LDI $ 4, (IX + $ 2);
Specify main
register

• LDI $ 4, (IZ- $ 2);

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 158

= 17
A = IM8: 3
+ 3 + 6 + 5
= 17

to the main register $
C5, the incremented
transfer memory
address is assigned to
IR.
IR is IX, IZ.
For A, $ C5, SIR, and
IM8 are applicable.

• LDI $ 4, (IX + $
SX); Indirect
designation by
SIR (unpublished)

• LDI $ 4, (IZ- $ SY);
• LDI $ 4, (IX +

123); 8-bit
immediate
designation

• LDI $ 4, (IZ-123);

LDD
(Load
Decrement)

LDD $
C5 , (IR
± A)

$ C5 ← (IR ±
A)
IR ← IR ± A

It does
not
change

A = SIR: 3 +
6 + 3 = 12
A = $ C5: 3
+ 3 + 6 + 3
= 15
A = IM8: 3
+ 3 + 6 + 3
= 15

Transfer the contents of
the external memory
whose address is (IR ±
A) to the main register $
C5, and then assign the
transfer memory
address to IR.
Unlike the association
from the LDI
instruction, it does not
actually decrease, but
the execution clock is
shorter.
IR is IX, IZ.
$ C5, SIR, IM8 can be
applied to A.

• LDD $ 4, (IX- $ 2);
Specify main
register

• LDD $ 4, (IZ + $
2);

• LDD $ 4, (IX- $
SX); Indirect
designation by
SIR (unpublished)

• LDD $ 4, (IZ + $
SZ);

• LDD $ 4, (IX-123);
8-bit immediate
designation

• LDD $ 4, (IZ +
123);

LDC
(Load Check)

LDC $
C5 ,
opr2 [,
(JR)
LABEL]

No
operation

It does
not
change

A = SIR: 3 +
6 = 9
A = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

Operands can be
specified in the same
format as the LD
instruction, but no
processing is actually
performed and only
instruction decoding is
performed.
Delay processing as
with the NOP
instruction.
However, if there is a
label in the third
operand, a relative
jump is made. (JR tag
can be omitted)

• LDC $ 4, $ 2;
Main register
specified

• LDC $ 4, $ SX;
Indirect
designation by
SIR

• LDC $ 4,128; 8-
bit immediate
designation

• LDC $ 4, $ 3,
ERROR; Register
specification +
Jump expansion

ST
(Store)

ST $ C5
, (IR ±
A)

$ C5 → (IR ±
A)

It does
not
change

A = SIR: 3 +
6 + 5 = 14
A = $ C5,
IM8: 3 + 3
+ 6 + 5 =
17

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR ±
A).
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.

• ST $ 4, (IX + $ 2);
Specify main
register

• ST $ 4, (IZ- $ 2);
• ST $ 4, (IX + $

SX); Indirect
designation by
SIR (unpublished)

• ST $ 4, (IZ- $ SY);

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 159

$ C5, SIR, IM8 can be
applied to A.

• ST $ 4, (IX + 123);
8-bit immediate
designation

• ST $ 4, (IZ-123);

ST
(Store $)

ST $ C5
, (A) [,
(JR)
LABEL]

$ C5 → (A) It does
not
change

A = SIR: 3 +
8 + 3 = 14
A = $ C5: 3
+ 3 + 8 + 3
= 17
(JR: +3)

The contents of the first
operand $ C5 are stored
in the external memory
with A as the address.
Note that the transfer
direction is opposite to
the LD command.
A can be $ C5, SIR.
If there is a label in the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

• ST $ 2, ($ 0);
Second operation
specification (2
bytes) ?? 3 bytes

• ST $ 2, ($ SZ);
Indirect
specification by
SIR (2 bytes).
Virtually only $
SZ = $ 0 can be
used. ($ SX = $ 31
($ 31, $ 0 pair), $
SY = $ 30 ($ 30, $
31 pair = 0001)
can be specified,
but the utility
value is low.)

• ST $ 2, ($ 10);
Normal (3 bytes)

• ST $ 2, ($ 10),
LABEL; Jump
expansion (4
bytes)

ST
(Store IM8)
undisclosed
instruction

ST IM8 ,
($ SIR)

IM8 → ($
SIR)

It does
not
change

3 + 3 + 8 +
3 = 17

The 8-bit immediate
value of the first
operand is stored in the
external memory
indicated by the main
register specified
indirect by SIR.
Note that the transfer
direction is opposite to
the LD command.
Virtually only $ SZ = $ 0
can be used. ($ SX = $
31 ($ 31, $ 0 pair), $ SY
= $ 30 ($ 30, $ 31 pair =
0001) can be specified,
but the utility value is
low.)

• ST 123, ($ SZ);

ST
(Store IM8 to
Register)
undisclosed
instruction

ST IM8 ,
$ C5

IM8 → $ C5 It does
not
change

3 + 3 + 11
= 17

The 8-bit immediate
value of the first
operand is stored in the
main register specified
by the second operand.
Note that the transfer
direction is opposite to

• ST 123, $ 0;

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 160

the LD command.
Same behavior as LD $
C5, IM8, but no Jump
extension.

STI
(Store
Increment)

STI $ C5
, (IR ±
A)

$ C5 → (IR ±
A)
IR ← IR ± A
+ 1

It does
not
change

A = SIR: 3 +
6 + 5 = 14
A = $ C5,
IM8: 3 + 3
+ 6 + 5 =
17

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR ±
A).
In IR, the incremented
transfer destination
address is stored.
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.
$ C5, SIR, IM8 can be
applied to A.

• STI $ 4, (IX + $ 2);
Specify main
register

• STI $ 4, (IZ- $ 2);
• STI $ 4, (IX + $

SX); Indirect
designation by
SIR

• STI $ 4, (IZ- $ SY);
• STI $ 4, (IX +

123); 8-bit
immediate
designation

• STI $ 4, (IZ-123);

STD
(Store
Decrement)
undisclosed
instruction

STD $
C5 , (IR
± A)

$ C5 → (IR ±
A)
IR ← IR ± A

It does
not
change

A = SIR: 3 +
6 + 3 = 12
A = $ C5,
IM8: 3 + 3
+ 6 + 3 =
15

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR ±
A).
The transfer destination
address is stored in IR.
As with LDD , the
decrement associated
with the name is not
actually performed.
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.
$ C5, SIR, IM8 can be
applied to A.

• STD $ 4, (IX + $
2); Specify main
register

• STD $ 4, (IZ- $ 2);
• STD $ 4, (IX + $

SX); Indirect
designation by
SIR

• STD $ 4, (IZ- $
SY);

• STD $ 4, (IX +
123); 8-bit
immediate
designation

• STD $ 4, (IZ-123);

PPS
(Pop by
System stack
pointer)

PPS $
C5

$ C5 ← (SS)
SS ← SS + 1

It does
not
change

3 + 6 + 5 =
14

After the contents of
external memory
specified by SS are
stored in main register
$ C5, SS is incremented.

• PPS $ 2;

PPU
(Pop by User
stack pointer)

PPU $
C5

$ C5 ← (US)
US ← US + 1

It does
not
change

3 + 6 + 5 =
14

After storing the
contents of the external
memory specified by US
in main register $ C5,
US is incremented.

• PPU $ 2;

PHS
(Push by
System stack
pointer)

PHS $
C5

$ C5 → (SS-
1)
SS ← SS-1

It does
not
change

3 + 6 + 3 =
12

After storing the value
of main register $ C5 in
the external memory
specified by SS-1, SS is
decremented.

• PHS $ 2;

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 161

PHU
(Push by User
stack pointer)

PHU $
C5

$ C5 → (US-
1)
US ← US-1

It does
not
change

3 + 6 + 3 =
12

After storing the value
of main register $ C5 in
the external memory
specified by US-1,
decrement US.

• PHU $ 2;

GFL
(Get Flag)

GFL $
C5 [,
(JR)
LABEL]

$ C5 ← F It does
not
change

3 + 6 = 9
(JR: +3)

The contents of the flag
register are stored in
the main register $ C5
designated by the first
operand.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

• GFL $ 2;
• GFL $ 2, LABEL;

Jump expansion

PFL
(Put Flag)

PFL A [,
(JR)
LABEL]

A → F Change
with the
value of
A

A = $ C5: 3
+ 6 = 9
A = IM8: 3
+ 3 + 6 =
12
(JR: +3)

Store the contents of A
in operand 1 in the flag
register. (Only the
upper 4 bits can be set
.) A is $ C5, IM8.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

• PFL $ 2;
• PFL $ 2, LABEL;

Jump expansion

GPO
(Get Port)

GPO $
C5 [,
(JR)
LABEL]

$ C5 ← Port It does
not
change

3 + 6 = 9
(JR: +3)

The contents of the
port terminal are stored
in the main register $
C5 specified by the first
operand.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

• GPO $ 2;
• GPO $ 2, LABEL;

Jump expansion

GST
(Get Status)

GST
Sreg , $
C5 [,
(JR)
LABEL]

$ C5 ← Sreg It does
not
change

3 + 6 = 9
(JR: +3)

The contents of the
status register are
stored in the main
register $ C5 specified
by the second operand.
Sreg = PE, PD, UA, IA, IE,
TM, IB.
If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted) The
storage direction is the
same as ST and
minority.

• GST PE, $ 2;
• GST IB, $ 2;

Interrupt control
/ bank control
register
(undisclosed
instruction)

• GST TM, $ 2,
LABEL; Jump
expansion

• GST IB, $ 2,
LABEL; Relative
jump
(undisclosed
instruction) after
storing interrupt

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 162

control / bank
control register
in $ 2
EU format

• GST CS, $ 2;
Interrupt control
/ bank control
register
(undisclosed
instruction)

• GST CS, $ 2,
J.LABEL; Relative
jump
(undisclosed
instruction) after
storing interrupt
control / bank
control register
in $ 2

PST
(Put Status)

GST
Sreg , A
[, (JR)
LABEL]

Sreg ← A It does
not
change

A = $ C5: 3
+ 6 = 9
A = IM8: 3
+ 3 + 6 =
12
(JR: +3)

Stores the value of A
specified by the second
operand in the status
register.
Sreg = PE, PD, UA, IA, IE,
TM, IB.
A is $ C5, IM8.
If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

• PST PE, $ 2; Main
register transfer

• PST IB, $ 2;
Interrupt control
/ bank control
register
(undisclosed
instruction)

• PST TM, $ 2,
LABEL; Jump
expansion

• PST IB, $ 2,
LABEL; Relative
jump
(undisclosed
instruction) after
storing value of $
2 in interrupt
control / bank
control register

• PST UA, 123; 8-
bit immediate
value transfer

• PST IB, 123;
Interrupt control
/ bank control
register
(undisclosed
instruction)
EU format

• PST CS, $ 2;
Interrupt control
/ bank control

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 163

register
(undisclosed
instruction)

• PST CS, 123,
J.LABEL; Relative
jump
(undisclosed
instruction) after
storing 123 in
interrupt control
/ bank control
register

STL
(Store data to
LCD)
undisclosed
instruction

STL A [,
(JR)
LABEL]

A → LCD It does
not
change

Without
JR: 3 + 15
= 18 With
JR: 3 + 3 +
14 = 20

Outputs the A value
specified by the first
operand to the LCD
data area.
A is $ C5, IM8.
If $ C5 is specified and
there is a label for the
second operand, a
relative jump occurs
after transfer. (JR tag
can be omitted)

• STL $ 2; Main
register

• STL $ 2, LABEL;
Jump expansion

• STL 123; 8-bit
immediate value
output
EU format

• OCB $ 2; main
register

• OCB $ 2, LABEL;
Jump extension

• OCB 123; 8-bit
immediate value
output

LDL
(Load data
from LCD)
undisclosed
instruction

LDL $
C5 [,
(JR)
LABEL]

$ C5 ← LCD
port data

It does
not
change

Without
JR: 3 + 15
= 18 With
JR: 3 + 3 +
14 = 20

The value of the LCD
data port is stored in
the first operand $ C5
according to the
transfer protocol set in
advance in the LCDC.
Since reading is
performed in units of 4
bits, graphic data on the
screen is read with the
upper and lower 4 bits
replaced.
For example, if the dot
on the screen is & H4A
display, executing LDL $
C5 results in $ C5 = &
HA4.
The readout procedure
is as follows.
(1) Specify drawing
mode (anything) and
LCD coordinate position
to LCDC. (STLM after
PPO & HDF)
(2) Set read command

• LDL $ 2; Main
register

• LDL $ 2, LABEL;
Jump extension
EU format

• ICB $ 2; Main
register

• ICB $ 2, LABEL;
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 164

(& HE1) to LCDC. (After
PPO & hDF, STL & HE1)
(3) Execute LDL with
data RAM specified.
(LDL after PPO & HDE)
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

PPO
(Put lcd
control Port)
undisclosed
instruction

PPO A [,
(JR)
LABEL]

A → LCD
control port

It does
not
change

A = $ C5: 3
+ 6 = 9
A = IM8: 3
+ 3 + 6 =
12
(JR: +3)

Outputs the A value
specified by the first
operand to the LCD
control port.
A is $ C5, IM8.
If $ C5 is specified and
there is a label for the
second operand, a
relative jump is
performed after the
transfer. (JR tag can be
omitted)

• PPO $ 2; Main
register

• PPO $ 2, LABEL;
Jump expansion

• PPO 123; 8-bit
immediate value
output
EU format

• PCB $ 2; Main
register

• PCB $ 2, LABEL;
Jump expansion

• PCB 123; 8-bit
immediate value
output

PSR
(Put Specific
index Register)
undisclosed
instruction

PSR SIR
, A [,
(JR)
LABEL]

SIR ← A It does
not
change

3 + 6 = 9
(JR: +3)

PSR SX, $ 2; Main register
PSR SY, $ 2, LABEL; Jump expansion
PSR SZ, 15; 5-bit immediate value (0-31)
EU format
PRA # 1, $ 2; Main register
PRA # 2, $ 2, J.LABEL; Jump expansion
PRA # 0,15; 5-bit immediate value (0-31)

The value of the second operand A is stored in the specific index register SIR designated by
the first operand .
SIR = SX, SY, SZ.
A is $ C5, IM8.
If $ C5 is specified and there is a label for the third operand, a relative jump is performed
after transfer. (JR tag can be omitted) If
this command is used to change the SIR setting (usually fixed at SX = 31, SY = 30, SZ = 0)
and control is returned to the system, it will run out of control.
When users change SIR, the following cautions are required.
(1) Disable interrupts while changing SIR.
(2) When returning to ROM processing or calling ROM processing, return SIR to its original
setting.
(3) Coding the optimization switch with OFF (LEVEL 0) specified.
(Because it is optimized at $ 31, $ 30, and $ 0 at LEVEL 1, the code gets confused.)

GSR
(Get Specific
index Register)
undisclosed
instruction

GSR SIR
, $ C5 [,
(JR)
LABEL]

SIR → $ C5 It does
not
change

3 + 6 = 9
(JR: +3)

The contents of the
specific index register
SIR designated by the
first operand are stored
in the main register $

GSR SX, $ 2;
GSR SY, $ 2,
LABEL; Jump
expansion
EU format

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 165

C5 of the second
operand.
SIR = SX, SY, SZ.
If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

GRA # 2, $ 2;
GRA # 0, $ 2,
J.LABEL; Jump
expansion

Mnemonic Table - Transfer Instruction (16 bits)

Mnemonic Format Function Flag
Number of

Clocks
Description Example format

LDW
(Load Word)

LDW
opr1 ,
opr2 [,
(JR)
LABEL]

opr1 ←
opr2

It does
not
change

- Transfer the contents of
opr2 to opr1.
Unreleased but with
jump extension.
By adding an address
label to operand 3
when a specific
combination of opr1
and opr2 is executed, a
relative jump is made
after execution of the
transfer.
Operand 3 and JR tag
can be omitted.
There are five types of
operand combinations
that can be used with
the LD instruction.
Refer to the following
for the applicability of
the jump extension.

LDW $
C5 , $
C5 [,
(JR)
LABEL]

opr1 @ $ C5
← opr2 @ $
C5

3 + 3 + 11
= 17
(JR: +3)

Transfer between main
registers

LDW $ 2, $ 0; $
0, $ 1 data
transferred to $
2, $ 3

LDW $
C5 , ($
A) [,
(JR)
LABEL]

opr1 @ $ C5
← opr2 @
($ A)

$ A = $
SIR: 3 + 8 +
3 + 3 = 17
$ A = $ C5:
3 + 3 + 8 +
3 + 3 = 20
(JR: +3)

Transfer from external
memory to main
register (1)
opr1 and opr2 are little
endian and 2 bytes.
$ A is $ C5, $ SIR.
$ Bank applies to UA
register IX.

LDW $ 2, ($ 0);
Transfer external
memory data
with addresses $
0 (lower) and $ 1
(upper) to $ 2, $
3
LDW $ 2, ($ SZ);
SZ = 0 by default,
so the same
operation as
LDW $ 2, ($ 0) is

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 166

executed at high
speed

LDW $
C5 , ({IX
| IZ} ± $
C5)

opr1 @ $ C5
← opr2 @
({IX | IZ} ± $
C5)

3 + 3 + 6 +
3 + 5 = 20

Transfer from external
memory to main
register (2)
Specification by index
register ± main register
(8 bits).
No jump extension.

LDW $ 2, (IX + $
31); Transfer
external memory
data addressed
to IX + $ 31 to $
2, $ 3

LDW $
C5 ,
IM16

$ C5 ←
IM16

3 + 3 + 3 +
14 = 23

Transfer 8-bit
immediate data to the
main register

LD $ 4, & H7012;
& H12 stored in
$ 4, & H70
stored in $ 5

LDW $
C5 , $
SIR [,
(JR)
LABEL]

$ C5 ← $
SIR

3 + 11 = 14
(JR: +3)

Indirect transfer of
main register by specific
index register SIR
(unpublished
instruction)
Compared with normal
register specification,
the instruction code is
shortened by 1 byte.
(When LEVEL 0 is
specified)
The execution clock is
shortened accordingly,
and it is frequently used
in ROM.
In the EU format, SX = #
0, SY = # 1, SZ = # 2, and
the JR tag can be
omitted and "J." can be
written.

LDW $ 4, $ SX;
Stores the main
register value (8
bits) indicated by
$ SX in $ 4 and
the main register
value (8 bits) of
the main register
+ 1 indicated by
$ SX in $ 5. By
default, $ SX = $
31 = 0, $ SX + 1 =
$ 0 (variable).
LDW $ 4, $ SZ;
Since SZ = 0 by
default, $ 4 = $
0, $ 5 = $ 1 is
assigned.
EU format
LDW $ 4, # 0; LD
$ 4, $ SX
LDW $ 4, # 0,
J.LABEL;

LDIW
(Load
Increment
Word)

LDIW $
C5 , (IR
± A)

$ C5, $ C5 +
1 ← (IR ± A)
IR ← IR ± A
+ 2

It does
not
change

A = SIR: 3 +
6 + 3 + 5 =
17
A = $ C5: 3
+ 3 + 6 + 3
+ 5 = 20

After the contents of
the external memory
with (IR ± A) as the
address are transferred
to the main registers $
C5 and $ C5 + 1, the
value obtained by
adding 2 to the transfer
memory address is
assigned to IR.
IR is IX, IZ.
For A, $ C5 and SIR are
applicable.
For example, in LDIW $
2, (IX + $ 0), if IX = &

LDIW $ 4, (IX + $
2); Specify main
register
LDIW $ 4, (IZ- $
2);
LDIW $ 4, (IX + $
SX); Indirect
designation by
SIR
(unpublished)
LDIW $ 4, (IZ- $
SY);

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 167

H7000, $ 0 = 1,
$ 2 ← (& H7001
memory contents)
$ 3 ← (& H7002
memory contents)
IX ← & H7003

LDDW
(Load
Decrement
Word)

LDDW $
C5 , (IR
± A)

$ C5, $ C5-1
← (IR ± A)
IR ← IR ± A-
1

It does
not
change

A = SIR: 3 +
3 + 6 + 3 =
15
A = $ C5: 3
+ 3 + 6 + 3
+ 3 = 18

Transfer the contents of
external memory whose
address is (IR ± A) to the
main registers $ C5 and
$ C5-1, and substitute
IR with the
decremented transfer
memory address.
IR is IX, IZ.
For A, $ C5 and SIR are
applicable.
Note that, unlike LDW
and LDIW, the main
register pair numbers
are $ C5 and $ C5-1.
For example, if IX = &
H7000, $ 0 = 1 in LDDW
$ 2, (IX + $ 0),
$ 2 ← (& H7001
memory contents)
$ 1 ← (& H7000
memory contents)
IX ← & H7000 (last
accessed address)

LDDW $ 4, (IX- $
10); Specify main
register
LDDW $ 4, (IZ + $
10);
LDDW $ 4, (IX- $
SX); Indirect
designation by
SIR (unreleased)
LDDW $ 4, (IZ + $
SZ);

LDCW
(Load Check
Word)

LDCW $
C5 , A [,
(JR)
LABEL]

No
operation

It does
not
change

A = SIR: 3 +
11 = 14
A = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

Operands can be
specified in the same
format as the LDW
instruction, but no
processing is actually
performed and only
instruction decoding is
performed.
Delay processing as
with the NOP
instruction.
A = $ C5, SIR.
However, if there is a
label in the third
operand, a relative
jump is made. (JR tag
can be omitted)

LDCW $ 4, $ 2;
Specify main
register
LDCW $ 4, $ SX;
Indirect
designation by
SIR
LDCW $ 4, $ 3,
ERROR; Register
specification +
Jump expansion
LDCW $ 4, $ SZ,
LABEL; Indirect
specification
with SIR + Jump
expansion

STW
(Store Word)

ST $ C5
, (IR ±
A)

$ C5 → (IR ±
A)
$ C5 + 1 →
(IR ± A + 1)

It does
not
change

A = SIR: 3 +
6 + 3 + 5 =
17
A = $ C5: 3

The contents of the first
operand main resist
pair $ C5, $ C5 + 1 are
stored in an external

STW $ 4, (IX + $
2); Specify main
register

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 168

+ 3 + 6 + 3
+ 5 = 20

memory whose address
is (IR ± A).
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.
A can be $ C5, SIR.

STW $ 4, (IZ- $
2);
STW $ 4, (IX + $
SX); Indirect
designation by
SIR
(unpublished)
STW $ 4, (IZ- $
SY);

STW
(Store Word $)

STW $
C5 , (A
) [, (JR)
LABEL]

$ C5 → (A)
$ C5 + 1 →
(A + 1)

It does
not
change

A = SIR: 3 +
8 + 3 + 3 =
17
A = $ C5: 3
+ 3 + 8 + 3
+ 3 = 20
(JR: +3)

The contents of the
main register pair $ C5,
$ C5 + 1 of the first
operand are stored in
an external memory
having addresses A
(lower) and A + 1
(upper).
Note that the transfer
direction is opposite to
the LD command.
A can be $ C5, SIR.
If there is a label in the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

STW $ 2, ($ 0);
second
operation
specification (2
bytes) ?? 3 bytes
STW $ 2, ($ SZ);
Indirect
specification by
SIR (2 bytes).
Virtually only $
SZ = $ 0 can be
used. ($ SX = $
31 ($ 31, $ 0
pair), $ SY = $ 30
($ 30, $ 31 pair =
0001) can be
specified, but
the utility value
is low.)
STW $ 2, ($ 10);
Normal (3 bytes)
STW $ 2, ($ 10),
LABEL; Jump
expansion (4
bytes)
STW $ 2, ($ SZ),
LABEL; Indirect
specification
with SIR + Jump
extension (3
bytes)

STW
(Store IM16)
undisclosed
instruction

STW
IM16 , (
$ SIR)

IM16 → ($
SIR)

It does
not
change

3 + 3 + 3 +
8 + 3 + 3 =
23

The 16-bit immediate
value of the first
operand is stored in the
external memory
indicated by the main
register specified
indirect by SIR.
Note that the transfer
direction is opposite to
the LD command.
Virtually only $ SZ = $ 0
can be used. ($ SX = $

STW & H7023, ($
SZ); Indirect
designation by
SIR
STW & H7023, ($
0); Available at
LEVEL 1. Cannot
be used at LEVEL
0.

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 169

31 ($ 31, $ 0 pair), $ SY
= $ 30 ($ 30, $ 31 pair =
0001) can be specified,
but the utility value is
low.)

STIW
(Store
Increment
Word)

STIW $
C5 , (IR
± A)

$ C5 → (IR ±
A)
$ C5 + 1 →
(IR ± A + 1)
IR ← IR ± A
+ 2

It does
not
change

A = SIR: 3 +
6 + 3 + 5 =
17
A = $ C5,
IM8: 3 + 3
+ 6 + 3 + 5
= 20

The contents of the first
operand main resist
pair $ C5, $ C5 + 1 are
stored in an external
memory whose address
is (IR ± A).
IR ± A + 2 is stored in IR.
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.
A can be $ C5, SIR.

STI $ 4, (IX + $ 2);
Specify main
register
STI $ 4, (IZ- $ 2);
STI $ 4, (IX + $
SX); Indirect
designation by
SIR
STI $ 4, (IZ- $ SY);

STDW
(Store
Decrement
Word)

STDW $
C5 , (IR
± A)

$ C5 → (IR ±
A)
$ C5-1 → (IR
± A-1)
IR ← IR ± A-
1

It does
not
change

A = SIR: 3 +
6 + 3 + 3 =
15
A = $ C5,
IM8: 3 + 3
+ 6 + 3 + 3
= 18

The contents of the first
operand main resist
pair $ C5, $ C5-1 are
stored in an external
memory whose address
is (IR ± A).
IR ± A-1 is stored in IR.
Note that the transfer
direction is opposite to
the LD command.
IR is IX, IZ.
A can be $ C5, SIR.
Note that unlike STW
and STIW, the main
register pair numbers
are $ C5 and $ C5-1.
For example, in STDW $
2, (IX + $ 0), when IX =
& H7000 and $ 0 = 1,
the operation is as
follows.
$ 2 → (& H7001
address)
$ 1 → (& H7000
address)
IX ← & H7000 (last
address accessed)

STDW $ 4, (IX + $
2); Specify main
register
STDW $ 4, (IZ- $
2);
STDW $ 4, (IX + $
SX); Indirect
designation by
SIR
STDW $ 4, (IZ- $
SY);

PPSW
(Pop by
System stack
pointer Word)

PPSW $
C5

$ C5 ← (SS)
$ C5 + 1 ←
(SS + 1)
SS ← SS + 2

It does
not
change

3 + 6 + 3 +
5 = 17

After storing the
contents of the external
memory specified by SS
in the main register pair
$ C5, $ C5 + 1, add 2 to
SS.

PPSW $ 2;

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 170

PPUW
(Pop by User
stack pointer
Word)

PPUW $
C5

$ C5 ← (US)
$ C5 + 1 ←
(US + 1)
US ← US + 2

It does
not
change

3 + 6 + 3 +
5 = 17

After storing the
contents of the external
memory specified by US
in the main register pair
$ C5, $ C5 + 1, add 2 to
US.

PPUW $ 2;

PHSW
(Push by
System stack
pointer Word)

PHSW $
C5

$ C5 → (SS-
1)
$ C5-1 →
(SS-2)
SS ← SS-2

It does
not
change

3 + 6 + 3 +
3 = 15

After storing the value
of the main register pair
$ C5, $ C5-1 in the
external memory
specified by SS-1, SS-2,
subtract 2 from SS.

PHSW $ 2;

PHUW
(Push by User
stack pointer
Word)

PHUW
$ C5

$ C5 → (US-
1)
$ C5-1 →
(US-2)
US ← US-2

It does
not
change

3 + 6 + 3 +
3 = 15

After storing the value
of the main register pair
$ C5, $ C5-1 in the
external memory
specified by US-1, US-2,
subtract 2 from US.

PHUW $ 2;

GRE
(Get Register)

GRE
Reg , $
C5 [,
(JR)
LABEL]

Reg → $ C5 It does
not
change

3 + 11 = 14
(JR: +3)

Stores the contents of
the status register in
the second operand $
C5.
Reg = IX, IY, IZ, SS, US,
KY
If there is a third
operand label, a relative
jump occurs after
transfer. (JR tag can be
omitted)

GRE IX, $ 2;
GRE US, $ 2;
GRE KY, $ 2,
LABEL; Jump
expansion

PRE
(Put Register)

PRE
Reg , A
[, (JR)
LABEL]

Reg ← A It does
not
change

A = $ C5: 3
+ 11 = 14
(JR: +3)
A = IM16:
3 + 3 + 3 +
11 = 20

Store the value of A of
the second operand in
the status register.
Reg = IX, IY, IZ, SS, US,
KY
A is $ C5 ($ C5, $ C5 + 1
pair), IM16.
If the second operand is
the main register and
there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

PRE IX, $ 2;
PRE US, $ 2;
PRE KY, $ 2,
LABEL; Jump
expansion
PRE IZ, & H703F;

STLW
(Store Word
data to LCD)
undisclosed
instruction

STLW $
C5 [,
(JR)
LABEL]

$ C5 → LCD
$ C5 + 1 →
LCD

It does
not
change

3 + 22 = 25
(JR: +3)

The main register pair $
C5, $ C5 + 1 of the first
operand is output to
the LCD data area.
Output is performed in
order of 8 bits.
If there is a label for the

STLW $ 2; Main
register
STLW $ 2, LABEL;
Jump expansion
EU format
OCBW $ 2; Main
register

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 171

second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

OCBW $ 2,
LABEL; Jump
expansion

LDLW
(Load Word
data from LCD)
undisclosed
instruction

LDLW $
C5 [,
(JR)
LABEL]

$ C5 ← LCD
port data
$ C5 + 1 ←
LCD port
data

It does
not
change

Without
JR: 3 + 23
= 26 With
JR: 3 + 3 +
22 = 28

The value of the LCD
data port is stored in
the main register pair $
C5, $ C5 + 1 designated
by the first operand
according to the
transfer protocol set in
advance in the LCDC.
Since reading is
performed in units of 4
bits, graphic data on the
screen is read with the
upper and lower 4 bits
replaced.
The reading procedure
is as follows.
(1) Specify drawing
mode (anything) and
LCD coordinate position
to LCDC. (STLM after
PPO & HDF)
(2) Set read command
(& HE1) to LCDC. (After
PPO & HDF, STL & HE1)
(3) Execute LDLW with
data RAM specified.
(LDLW after PPO &
HDE)
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

LDLW $ 2; Main
register
LDLW $ 2, LABEL;
Jump expansion
EU format
ICBW $ 2; Main
register
ICBW $ 2, LABEL;
Jump expansion

PPOW
(Put lcd
control Port
Word)
undisclosed
instruction

PPOW $
C5 [,
(JR)
LABEL]

$ C5 → LCD
control port
$ C5 + 1 →
LCD control
port

It does
not
change

3 + 11 = 14
(JR: +3)

The value of the main
register pair $ C5, $ C5
+ 1 specified by the first
operand is output to
the LCD control port.
Output is performed in
order of 8 bits.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)
Note: The I / O port
accessible by this
command is different

PPOW $ 2; Main
register
PPOW $ 2,
LABEL; Jump
extension
EU format
PCBW $ 2; Main
register
PCBW $ 2,
LABEL; Jump
expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 172

from the PD register. (I
/ O of LCD system)

GFLW
(Get Flag
Word)

GFLW $
C5 [,
(JR)
LABEL]

$ C5 ← F
$ C5 + 1 ← F

It does
not
change

3 + 11 = 14
(JR: +3)

The contents of the flag
register are stored in
the main register pair $
C5, $ C5 + 1 specified by
the first operand.
At this time, the same
data is stored in $ C5
and $ C5 + 1.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

GFLW $ 2;
GFLW $ 2,
LABEL; Jump
expansion

GPOW
(Get Port
Word)
undisclosed
instruction

GPOW
$ C5 [,
(JR)
LABEL]

$ C5 ← Port
$ C5 + 1 ←
Port

It does
not
change

3 + 11 = 14
(JR: +3)

The contents of the
port terminal are stored
in the main register pair
$ C5, $ C5 + 1 specified
by the first operand.
The register pair $ C5, $
C5 + 1 contains the
same data.
If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

GPOW $ 2;
GPOW $ 2,
LABEL; Jump
expansion

PSRW
(Put Specific
index Register
Word)
undisclosed
instruction

PSRW
SIR , $
C5 [,
(JR)
LABEL]

SIR ← $ C5
SIR ← $ C5
+ 1

It does
not
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair $ C5,
$ C5 + 1 of the second
operand are stored in
the specific index
register SIR designated
by the first operand .
However, only $ C5
(lower 5 bits) is stored
in the SIR.
SIR = SX, SY, SZ.
If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted) If
this command is used
to change the SIR
setting (usually fixed at
SX = 31, SY = 30, SZ = 0)
and control is returned
to the system, it will
run out of control.

PSRW SX, $ 2;
Main register
PSRW SY, $ 2,
LABEL; Jump
expansion
EU format
PRAW # 1, $ 4;
Main register
PRAW # 2, $ 4,
J.LABEL; Jump
expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 173

When users change SIR,
the following cautions
are required.
(1) Disable interrupts
while changing SIR.
(2) When returning to
ROM processing or
calling ROM processing,
return SIR to its original
setting.
(3) Coding the
optimization switch
with OFF (LEVEL 0)
specified.
(Because it is optimized
at $ 31, $ 30, and $ 0 at
LEVEL 1, the code gets
confused.)

GSRW
(Get Specific
index Register
Word)
undisclosed
instruction

GSRW
SIR , $
C5 [,
(JR)
LABEL]

SIR → $ C5
SIR + 1 → $
C5 + 1

It does
not
change

3 + 11 = 14
(JR: +3)

The specific index
registers SIR and SIR + 1
designated by the first
operand are stored in
the main register pair $
C5 and $ C5 + 1 of the
second operand.
SIR = SX, SY, SZ.
If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)
For example, in GSRW
SY, $ 2, if SY = 30, $ 2 =
30 and $ 3 = 31 are
stored. When SY = 31, $
2 = 31 and $ 3 = 0 are
stored.

GSRW SX, $ 2;
GSRW SY, $ 2,
LABEL; Jump
expansion
EU format
GRAW # 2, $ 2;
GRAW # 0, $ 2,
J.LABEL; Jump
expansion

Mnemonic Table - Arithmetic operation instruction (8 bits)

Operand formats not described in the format examples are not supported.
To be precise, INV and CMP are classified into shift instruction groups, but arithmetic
instructions are easier to understand.

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

INV
(Invert)

INV $
C5 [,
(JR)
LABEL]

$ C5 ← &
HFF-$ C5

Z, C = 1,
LZ, UZ
change

3 + 6 = 9
(JR: +3)

Bit-inverts the contents
of the main register
specified by the first
operand (1's
complement).
If there is a label for the

INV $ 2;
INV $ 2, LABEL;
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 174

second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

CMP
(Complement)

CMP $
C5 [,
(JR)
LABEL]

$ C5 ← 2 ^
8- $ C5

Z, C, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

1 is added to the
contents of the main
register specified by the
first operand after bit
inversion (2's
complement).
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

CMP $ 2;
CMP $ 2, LABEL;
Jump expansion

AD
(Add)

AD A , B
[, (JR)
LABEL]

A ← A + B Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 6 = 9
(A, B) = ($
C5, $ C5):
3 + 3 + 6 =
12
(A, B) = ($
C5, IM8):
3 + 3 + 6 =
12
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 3 + 3 =
15
A = (IR ± $
C5): 3 + 3
+ 6 + 3 + 3
= 18
A = (IR ± $
IM8): 3 + 3
+ 6 + 3 + 3
= 18

The result of adding the
value of the first
operand A and the
value of the second
operand B is stored in
A.
For operations other
than external memory,
a relative jump is
performed after the
operation according to
the description in the
label of the third
operand. (JR tag can be
omitted)

AD $ 4, $ 2; Main
registers
AD $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
AD $ 4, $ SZ;
Indirect
designation by
main register +
SIR
AD $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)
AD $ 4,123; Main
register + IM8
AD $ 4,123,
LABEL; Main
letter + IM8
(Jump expansion)
AD (IX + $ 4), $ 2;
External memory
(1) + Main
register →
External memory
AD (IX- $ SZ), $ 2;
External memory
(indirect
designation by
SIR) + main
register →
external memory
AD (IZ + 123), $
2; External

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 175

memory (2) +
Main register →
External memory

SB
(Subtract)

SB A , B
[, (JR)
LABEL]

A ← AB Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 6 = 9
(A, B) = ($
C5, $ C5):
3 + 3 + 6 =
12
(A, B) = ($
C5, IM8):
3 + 3 + 6 =
12
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 3 + 3 =
15
A = (IR ± $
C5): 3 + 3
+ 6 + 3 + 3
= 18
A = (IR ± $
IM8): 3 + 3
+ 6 + 3 + 3
= 18

The result of
subtracting the value of
the second operand B
from the value of the
first operand A is stored
in A.
For operations other
than external memory,
a relative jump is
performed after the
operation according to
the description in the
label of the third
operand. (JR tag can be
omitted)

SB $ 4, $ 2; Main
registers
SB $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SB $ 4, $ SZ;
Indirect
designation by
main register-SIR
SB $ 4, $ SZ,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)
SB $ 4,123; Main
register-IM8
SB $ 4,123,
LABEL; Main
letter-IM8 (Jump
expansion)
SB (IX + $ 4), $ 2;
External memory
(1) -Main register
→ External
memory
SB (IX- $ SZ), $ 2;
External memory
(Indirect
designation by
SIR)-Main
register →
External memory
SB (IZ + 123), $ 2;
External memory
(2)-Main register
→ External
memory

ADB
(Add BCD)

ADB A ,
B [, (JR)
LABEL]

A ← A + B
(BCD
calculation)

Z, C, LZ,
UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The result of BCD
addition of the value of
the first operand A and
the value of the second
operand B is stored in
A.
The BCD format is a
decimal number in
which the upper 4 bits
are the 10's place and

ADB $ 4, $ 2;
Main registers
ADB $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ADB $ 4, $ SZ;
Indirect
designation by

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 176

the lower 4 bits are the
1's place.
Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

main register +
SIR
ADB $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)
ADB $ 4, & H12;
Main register +
IM8. & H12 (18)
is BCD decimal
number 12.
ADB $ 4, & H12,
LABEL; Main
letter + IM8
(Jump expansion)

SBB
(Subtract BCD)

SBB A ,
B [, (JR)
LABEL]

A ← AB
(BCD
calculation)

Z, C, LZ,
UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The result of BCD
subtraction of the value
of the second operand
B from the value of the
first operand A is stored
in A.
The BCD format is a
decimal number in
which the upper 4 bits
are the 10's place and
the lower 4 bits are the
1's place.
Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

SBB $ 4, $ 2;
Main registers
SBB $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SBB $ 4, $ SZ;
Main register-
Indirect
specification with
SIR
SBB $ 4, $ SZ,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)
SBB $ 4, & H12;
Main register-
IM8. & H12 (18)
is BCD decimal
number 12.
SBB $ 4, & H12,
LABEL; Main
letter-IM8 (Jump
expansion)

ADC
(Add Check)

ADC A ,
B [, (JR)
LABEL]

(A ← A + B) Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 6 = 9
(A, B) = ($
C5, $ C5):
3 + 3 + 6 =
12
(A, B) = ($
C5, IM8):

Adds the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.
For operations other
than external memory,

ADC $ 4, $ 2;
Main registers
ADC $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
ADC $ 4, $ SZ;
Indirect
designation by

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 177

3 + 3 + 6 =
12
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 6 = 15
A = (IR ± $
C5): 3 + 3
+ 6 + 6 =
18
A = (IR ± $
IM8): 3 + 3
+ 6 + 3 + 3
= 18

a relative jump is
performed after the
operation according to
the description in the
label of the third
operand. (JR tag can be
omitted)

main register +
SIR
ADC $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)
ADC $ 4,123;
Main register +
IM8
ADC $ 4,123,
LABEL; Main
letter + IM8
(Jump expansion)
ADC (IX + $ 4), $
2; External
memory (1) +
Main register
ADC (IX- $ SZ), $
2; External
memory (indirect
specification by
SIR) + main
register
ADC (IZ + 123), $
2; External
memory (2) +
Main register

SBC
(Subtract
Check)

SBC A ,
B [, (JR)
LABEL]

(A ← AB) Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 6 = 9
(A, B) = ($
C5, $ C5):
3 + 3 + 6 =
12
(A, B) = ($
C5, IM8):
3 + 3 + 6 =
12
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 6 = 15
A = (IR ± $
C5): 3 + 3
+ 6 + 6 =
18
A = (IR ± $
IM8): 3 + 3
+ 6 + 3 + 3
= 18

Subtracts the value of
the second operand B
from the value of the
first operand A, but
does not store the
result anywhere, only
the flag changes.
For operations other
than external memory,
a relative jump is
performed after the
operation according to
the description in the
label of the third
operand. (JR tag can be
omitted)

SBC $ 4, $ 2;
Main registers
SBC $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SBC $ 4, $ SZ;
Indirect
designation by
main register-SIR
SBC $ 4, $ SZ,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)
SBC $ 4,123;
Main register-
IM8
SBC $ 4,123,
LABEL; Main
letter-IM8 (Jump
expansion)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 178

SBC (IX + $ 4), $
2; External
memory (1) -
Main register
SBC (IX- $ SZ), $
2; External
memory (indirect
specification by
SIR) -Main
register
SBC (IZ + 123), $
2; External
memory (2) -
Main register

AN
(And)

AN A , B
[, (JR)
LABEL]

A ← A and B Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The result of the logical
product (AND) of the
value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

AN $ 4, $ 2; Main
registers
AN $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
AN $ 4, $ SZ;
Indirect
designation by
main register and
SIR
AN $ 4, $ SZ,
LABEL; Indirect
specification by
main register and
SIR (Jump
expansion)
AN $ 4,123; Main
register and IM8
AN $ 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

ANC
(And Check)

ANC A ,
B [, (JR)
LABEL]

(A ← A and
B)

Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

Performs a logical AND
of the values of the first
operand A and the
second operand B, but
does not store the
result anywhere, only
the flag changes.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ANC $ 4, $ 2;
Main registers
ANC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ANC $ 4, $ SZ;
Indirect
designation by
main register and
SIR
ANC $ 4, $ SZ,
LABEL; Indirect
specification by
main register and

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 179

SIR (Jump
extension)
ANC $ 4,123;
Main register and
IM8
ANC $ 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

NA
(Nand)

NA A , B
[, (JR)
LABEL]

A ← A nand
B

Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The result of NAND
(AND bit inversion) of
the value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

NA $ 4, $ 2; Main
registers
NA $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
NA $ 4, $ SZ;
Indirect
designation by
main register
nand SIR
NA $ 4, $ SZ,
LABEL; Main
register nand SIR
indirect
specification
(Jump extension)
NA $ 4,123; Main
register nand
IM8
NA $ 4,123,
LABEL; Main
letter nand IM8
(Jump expansion)

NAC
(Nand Check)

NAC A ,
B [, (JR)
LABEL]

(A ← A
nand B)

Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

NAND of the value of
the first operand A and
the value of the second
operand B (bit inversion
of AND), but the result
is not stored anywhere,
only the flag changes.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

NAC $ 4, $ 2;
Main registers
NAC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
NAC $ 4, $ SZ;
Indirect
specification by
main register
nand SIR
NAC $ 4, $ SZ,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 180

NAC $ 4,123;
Main register
nand IM8
NAC $ 4,123,
LABEL; Main
letter nand IM8
(Jump expansion)

OR
(Or)

OR A , B
[, (JR)
LABEL]

A ← A or B Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The logical sum (OR)
result of the value of
the first operand A and
the value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

OR $ 4, $ 2; Main
registers
OR $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
OR $ 4, $ SZ;
Indirect
designation by
main register or
SIR
OR $ 4, $ SZ,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)
OR $ 4,123; Main
register or IM8
OR $ 4,123,
LABEL; Main
letter or IM8
(Jump expansion)

ORC
(Or Check)

ORC A ,
B [, (JR)
LABEL]

(A ← A or B) Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

ORs the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ORC $ 4, $ 2;
Main registers
ORC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ORC $ 4, $ SZ;
Indirect
specification by
main register or
SIR
ORC $ 4, $ SZ,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)
ORC $ 4,123;
Main register or
IM8
ORC $ 4,123,
LABEL; Main

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 181

letter or IM8
(Jump expansion)

XR
(Exclusive Or)

XR A , B
[, (JR)
LABEL]

A ← A xor B Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

The result of the
exclusive OR (OR) of the
value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

XR $ 4, $ 2; Main
registers
XR $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
XR $ 4, $ SZ;
Indirect
designation by
main register xor
SIR
XR $ 4, $ SZ,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)
XR $ 4,123; Main
register xor IM8
XR $ 4,123,
LABEL; Main
letter xor IM8
(Jump expansion)

XRC
(Exclusive Or
Check)

XRC A ,
B [, (JR)
LABEL]

(A ← A xor
B)

Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
6 = 9
B = $ C5,
IM8: 3 + 3
+ 6 = 12
(JR: +3)

XOR is performed on
the value of the first
operand A and the
value of the second
operand B, but the
result is not stored
anywhere and only the
flag changes.
A = $ C5. B = $ C5, $ SIR,
IM8.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

XRC $ 4, $ 2;
Main registers
XRC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
XRC $ 4, $ SZ;
Main register xor
SIR indirect
specification
XRC $ 4, $ SZ,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)
XRC $ 4,123;
Main register xor
IM8
XRC $ 4,123,
LABEL; Main
letter xor IM8
(Jump expansion)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 182

Mnemonic Table - Arithmetic operation instruction (16 bits)

Operand formats not described in the format examples are not supported.
The flag operation differs from 8-bit arithmetic as follows.
• Z: 0 when all 16 bits of the operation result are 0.
• Z: C: 1 when there is a carry or borrow from the most significant bit (bit 15).
• Z: LZ: 0 when the lower 4 bits of the upper 8 bits are 0.
• Z: UZ: 0 when the upper 4 bits of the upper 8 bits are 0.
To be precise, INVW and CMPW are classified into shift instruction groups, but arithmetic
instructions are easier to understand.

Mnemonic Format Function Flag
Number of

Clocks
Description Example format

INVW
(Invert Word)

INVW $
C5 [,
(JR)
LABEL]

($ C5 + 1, $
C5) ← &
HFFFF-($ C5
+ 1, $ C5)

Z, C = 1,
LZ, UZ
change

3 + 11 = 14
(JR: +3)

Bit-inverts the contents
of the main register pair
specified by the first
operand (1's
complement).
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

INVW $ 2;
INVW $ 2, LABEL;
Jump expansion

CMPW
(Complement
Word)

CMPW
$ C5 [,
(JR)
LABEL]

($ C5 + 1, $
C5) ← 2 ^
16-($ C5 +
1, $ C5)

Z, C, LZ,
UZ
change

3 + 11 = 14
(JR: +3)

1 is added to the
contents of the main
register pair specified
by the first operand
after bit inversion (2's
complement).
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

CMPW $ 2;
CMPW $ 2,
LABEL; Jump
expansion

ADW
(Add Word)

ADW A
, B [,
(JR)
LABEL]

A ← A + B Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 11 = 14
(A, B) = ($
C5, $ C5):
3 + 3 + 11
= 17
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 3 + 3 + 3
+ 3 = 21
A = (IR ± $
C5): 3 + 3
+ 6 + 3 + 3
+ 3 + 3 =
24

The result of adding the
value of the first
operand A and the
value of the second
operand B is stored in
A.
Almost the same as 8-
bit operation, except
that the operation is
performed with 16 bits.
Only in the case of
operations between
main registers
(including indirect
specification by SIR), a
relative jump is made
after the operation

ADW $ 4, $ 2;
Main registers
ADW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
ADW $ 4, $ SZ;
Indirect
designation by
main register +
SIR
ADW $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 183

according to the
description of the label
of the third operand.
(JR tag can be omitted)

ADW (IX + $ 4), $
2; External
memory + Main
register →
External memory
ADW (IX- $ SZ), $
2; External
memory (indirect
designation by
SIR) + main
register →
external memory

SBW
(Subtract
Word)

SBW A ,
B [, (JR)
LABEL]

A ← AB Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 11 = 14
(A, B) = ($
C5, $ C5):
3 + 3 + 11
= 17
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 3 + 3 + 3
+ 3 = 21
A = (IR ± $
C5): 3 + 3
+ 6 + 3 + 3
+ 3 + 3 =
24

The result of
subtracting the value of
the second operand B
from the value of the
first operand A is stored
in A.
Almost the same as 8-
bit operation, except
that the operation is
performed with a 16-bit
pair register.
Only in the case of
operations between
main registers
(including indirect
specification by SIR), a
relative jump is made
after the operation
according to the
description of the label
of the third operand.
(JR tag can be omitted)

SBW $ 4, $ 2;
Main registers
SBW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SBW $ 4, $ SZ;
Indirect
designation by
main register-SIR
SBW $ 4, $ SZ,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)
SBW (IX + $ 4), $
2; External
memory-Main
register →
External memory
SBW (IX- $ SZ), $
2; External
memory (Indirect
designation by
SIR)-Main
register →
External memory

ADBW
(Add BCD
Word)

ADBW
A , B [,
(JR)
LABEL]

A ← A + B
(BCD
calculation)

Z, C, LZ,
UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The result of BCD
addition of the value of
the first operand A and
the value of the second
operand B is stored in
A.
The BCD format is a
decimal number in
which the upper 4 bits
of $ C5 + 1 are in the
thousands, the lower 4
bits are in the 100s, the

ADBW $ 4, $ 2;
Main registers
ADBW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ADBW $ 4, $ SZ;
Indirect
designation with
main register +
SIR

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 184

upper 4 bits of $ C5 are
in the 10s, and the
lower 4 bits are in the
1s.
Almost the same as 8-
bit operation, except
that the operation is
performed with a 16-bit
pair register.
Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

ADBW $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

SBBW
(Subtract BCD
Word)

SBBW A
, B [,
(JR)
LABEL]

A ← AB
(BCD
calculation)

Z, C, LZ,
UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The result of BCD
subtraction of the value
of the second operand
B from the value of the
first operand A is stored
in A.
Almost the same as 8-
bit operation except
that the operation is
performed in a 16-bit
pair register.
Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

SBBW $ 4, $ 2;
Main registers
SBBW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SBBW $ 4, $ SZ;
Main register-
Indirect
specification with
SIR
SBBW $ 4, $ SZ,
LABEL; Indirect
specification by
main register-SIR
(Jump extension)

ADCW
(Add Check
Word)

ADCW
A , B [,
(JR)
LABEL]

(A ← A + B) Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 11 = 14
(A, B) = ($
C5, $ C5):
3 + 3 + 11
= 17
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 6 + 6 =
21
A = (IR ± $
C5): 3 + 3
+ 6 + 6 + 6
= 24

Adds the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.
Almost the same as 8-
bit operation except
that the operation is
performed in a 16-bit
pair register.
Only in the case of
operations between
main registers
(including indirect
specification by SIR), a
relative jump is

ADCW $ 4, $ 2;
Main registers
ADCW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
ADCW $ 4, $ SZ;
Indirect
designation by
main register +
SIR
ADCW $ 4, $ SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 185

performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

ADCW (IX + $ 4),
$ 2; External
memory + Main
register
ADCW (IX- $ SZ),
$ 2; External
memory (indirect
specification by
SIR) + main
register

SBCW
(Subtract
Check Word)

SBCW A
, B [,
(JR)
LABEL]

(A ← AB) Z, C, LZ,
UZ
change

(A, B) = ($
C5, SIR): 3
+ 11 = 14
(A, B) = ($
C5, $ C5):
3 + 3 + 11
= 17
(JR: +3)
A = (IR ±
SIR): 3 + 6
+ 6 + 6 =
21
A = (IR ± $
C5): 3 + 3
+ 6 + 6 + 6
= 24

Subtracts the value of
the second operand B
from the value of the
first operand A, but
does not store the
result anywhere, only
the flag changes.
Almost the same as 8-
bit operation, except
that the operation is
performed with a 16-bit
pair register.
Only in the case of
operations between
main registers
(including indirect
specification by SIR), a
relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

SBCW $ 4, $ 2;
Main registers
SBCW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
SBCW $ 4, $ SZ;
Main register-
Indirect
specification with
SIR
SBCW $ 4, $ SZ,
LABEL; Indirect
specification by
main register-SIR
(Jump extension)
SBCW (IX + $ 4),
$ 2; External
memory-Main
register
SBCW (IX- $ SZ),
$ 2; External
memory (indirect
specification by
SIR) -Main
register

ANW
(And Word)

ANW A
, B [,
(JR)
LABEL]

A ← A and B Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The result of the logical
product (AND) of the
value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ANW $ 4, $ 2;
Main registers
ANW $ 4, $ 2,
LABEL; Main
registers (Jump
expansion)
ANW $ 4, $ SZ;
Indirect
designation by
main register and
SIR
ANW $ 4, $ SZ,
LABEL; Indirect
specification with
main register and

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 186

SIR (Jump
expansion)
ANW $ 4,123;
Main register and
IM8
ANW $ 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

ANCW
(And Check
Word)

ANCW
A , B [,
(JR)
LABEL]

(A ← A and
B)

Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

Performs a logical AND
of the values of the first
operand A and the
second operand B, but
does not store the
result anywhere, only
the flag changes.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ANC $ 4, $ 2;
Main registers
ANC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ANC $ 4, $ SZ;
Indirect
designation by
main register and
SIR
ANC $ 4, $ SZ,
LABEL; Indirect
specification by
main register and
SIR (Jump
extension)

NAW
(Nand Word)

NAW A
, B [,
(JR)
LABEL]

A ← A nand
B

Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The result of NAND
(AND bit inversion) of
the value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

NAW $ 4, $ 2;
Main registers
NAW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
NAW $ 4, $ SZ;
Indirect
designation by
main register
nand SIR
NAW $ 4, $ SZ,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

NACW
(Nand Check
Word)

NACW
A , B [,
(JR)
LABEL]

(A ← A
nand B)

Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

NAND of the value of
the first operand A and
the value of the second
operand B (bit inversion
of AND), but the result
is not stored anywhere,
only the flag changes.
A = $ C5. B = $ C5, $ SIR.

NACW $ 4, $ 2;
Main registers
NACW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
NACW $ 4, $ SZ;
Indirect

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 187

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

specification by
main register
nand SIR
NACW $ 4, $ SZ,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

ORW
(Or Word)

ORW A
, B [,
(JR)
LABEL]

A ← A or B Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The logical sum (OR)
result of the value of
the first operand A and
the value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ORW $ 4, $ 2;
Main registers
ORW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ORW $ 4, $ SZ;
Indirect
specification by
main register or
SIR
ORW $ 4, $ SZ,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)

ORCW
(Or Check
Word)

ORCW
A , B [,
(JR)
LABEL]

(A ← A or B) Z, C = 1,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5,
IM8: 3 + 3
+ 11 = 17
(JR: +3)

ORs the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ORCW $ 4, $ 2;
Main registers
ORCW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
ORCW $ 4, $ SZ;
Indirect
designation by
main register or
SIR
ORCW $ 4, $ SZ,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)

XR
(Exclusive Or
Word)

XRW A ,
B [, (JR)
LABEL]

A ← A xor B Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

The result of the
exclusive OR (OR) of the
value of the first
operand A and the
value of the second
operand B is stored in
A.
A = $ C5. B = $ C5, $ SIR.

XR $ 4, $ 2; Main
registers
XR $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
XR $ 4, $ SZ;
Indirect

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 188

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

designation by
main register xor
SIR
XR $ 4, $ SZ,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)

XRCW
(Exclusive Or
Check Word)

XRCW A
, B [,
(JR)
LABEL]

(A ← A xor
B)

Z, C = 0,
LZ, UZ
change

B = SIR: 3 +
11 = 14
B = $ C5: 3
+ 3 + 11 =
17
(JR: +3)

XOR is performed on
the value of the first
operand A and the
value of the second
operand B, but the
result is not stored
anywhere and only the
flag changes.
A = $ C5. B = $ C5, $ SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

XRC $ 4, $ 2;
Main registers
XRC $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
XRC $ 4, $ SZ;
Main register xor
SIR indirect
specification
XRC $ 4, $ SZ,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)

Rotate shift instruction (8 bits)

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

ROU
(Rotate Up)

ROU $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

Rotate left between the
main register specified
by the first operand and
the carry flag.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

ROU $ 2;
ROU $ 2, LABEL;
Jump expansion

ROD
(Rotate Down)

ROD $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

Rotate right between
the main register
specified by the first
operand and the carry
flag.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

ROD $ 2;
ROD $ 2, LABEL;
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 189

BIU
(Bit Up)

BIU $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

The contents of the
main register specified
by the first operand are
incremented 1 bit to
the left, 0 is stored in
the least significant bit,
and the carry is stored
in the carry.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BIU $ 2;
BIU $ 2, LABEL;
Jump expansion

BID
(Bit Down)

BID $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

The contents of the
main register specified
by the first operand are
moved down 1 bit to
the right, the most
significant bit is set to 0,
and the carry is stored
in the carry.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BID $ 2;
BID $ 2, LABEL;
Jump expansion

DIU
(Digit Up)

DIU $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ = 0,
UZ
changes

3 + 6 = 9
(JR: +3)

The contents of the
main register specified
by the first operand are
raised 4 bits to the left,
and 0 is placed in the
lower bits.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

DIU $ 2;
DIU $ 2, LABEL;
Jump expansion

DID
(Digit Down)

DID $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ, UZ =
0
change

3 + 6 = 9
(JR: +3)

Decreases the contents
of the main register
specified by the first
operand by 4 bits to the
right and puts 0 in the
upper bits.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

DID $ 2;
DID $ 2, LABEL;
Jump expansion

BYU
(Byte Up)

BYU $
C5 [,

See figure Z = 0, C
= 0, LZ,

3 + 6 = 9
(JR: +3)

0 is stored in the main
register specified by the
first operand.

BYU $ 2;
BYU $ 2, LABEL;
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 190

undisclosed
instruction

(JR)
LABEL]

UZ
change

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BYD
(Byte Down)
undisclosed
instruction

BYD $
C5 [,
(JR)
LABEL]

See figure Z = 0, C
= 0, LZ,
UZ
change

3 + 6 = 9
(JR: +3)

0 is stored in the main
register specified by the
first operand.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BYD $ 2;
BYD $ 2, LABEL;
Jump expansion

Rotate shift instruction (16 bits)

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

ROUW
(Rotate Up
Word)

ROUW
$ C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 11 = 14
(JR: +3)

16-bit left rotation is
performed between the
main register pair ($ C5
+ 1, $ C5) specified by
the first operand and
the carry flag.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

ROUW $ 2;
ROUW $ 2,
LABEL; Jump
expansion

RODW
(Rotate Down
Word)

RODW
$ C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 11 = 14
(JR: +3)

16-bit right rotation is
performed between the
main register pair ($ C5,
$ C5-1) specified by the
first operand and the
carry flag.
Note that the register
pair is $ C5, $ C5-1.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

RODW $ 2;
RODW $ 2,
LABEL; Jump
expansion

BIUW
(Bit Up Word)

BIUW $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5
+ 1, $ C5) specified by
the first operand are
incremented 1 bit to
the left, 0 is placed in
the least significant bit,
and the carry is stored
in the carry.

BIUW $ 2;
Register pair is ($
3, $ 2), $ 2 is
lower byte.
BIUW $ 2, LABEL;
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 191

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BIDW
(Bit Down
Word)

BIDW $
C5 [,
(JR)
LABEL]

See figure Z, C, LZ,
UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5,
$ C5-1) specified by the
first operand are
lowered 1 bit to the
right, 0 is placed in the
most significant bit, and
the carry is stored in
the carry.
Note that the register
pair is $ C5, $ C5-1.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BIDW $ 2; The
register pair is ($
2, $ 1), and $ 2 is
the upper byte.
BIDW $ 2, LABEL;
Jump expansion

DIUW
(Digit Up
Word)

DIUW $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ, UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5
+ 1, $ C5) specified by
the first operand are
raised 4 bits to the left,
and 0 is placed in the
lower bits.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

DIUW $ 2; Regist
pair is ($ 3, $ 2),
$ 2 is the lower
byte.
DIUW $ 2,
LABEL; Jump
expansion

DIDW
(Digit Down
Word)

DIDW $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ, UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5,
$ C5-1) specified by the
first operand are
lowered 4 bits to the
right and 0 is placed in
the upper bits.
Note that the register
pair is $ C5, $ C5-1.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

DIDW $ 2;
Register pair is ($
2, $ 1), $ 2 is the
upper byte.
DIDW $ 2, LABEL;
Jump expansion

BYUW
(Byte Up
Word)

BYUW $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ, UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5
+ 1, $ C5) specified by
the first operand are

BYUW $ 2; Regist
pair is ($ 3, $ 2),
$ 2 is the lower
byte.

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 192

increased 8 bits to the
left, and all lower bytes
are set to 0.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BYUW $ 2,
LABEL; Jump
expansion

BYDW
(Byte Down
Word)

BYDW $
C5 [,
(JR)
LABEL]

See figure Z, C = 0,
LZ, UZ
change

3 + 11 = 14
(JR: +3)

The contents of the
main register pair ($ C5,
$ C5-1) specified by the
first operand are down
8 bits to the right, and
all upper bytes are set
to 0.
Note that the register
pair is $ C5, $ C5-1.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

BYDW $ 2;
Register pair is ($
2, $ 1), $ 2 is
upper byte.
BYDW $ 2,
LABEL; Jump
expansion

Mnemonic Table - Jump / call instructions

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

JP
(Jump)

JP {
IM16 |
LABEL }

PC ← IM16 No
change

3 + 3 + 6 =
12

The 16-bit immediate
value of the first
operand is taken into
the program counter
(PC), and jumps to that
address.

JP & H703F;
Unconditional
jump

JP
(Jump flag)

JP Flag ,
{ IM16
| LABEL
}

If Flag then
PC ← IM16

No
change

3 + 3 + 6 =
12

When the condition of
the flag register of the
first operand is
satisfied, the 16-bit
immediate value of the
second operand is
taken into the program
counter (PC) and
jumped to that address.

JP Z, & H703F;
Jump if Z = 0
(calculation
result is 0)
JP NZ, & H703F;
Jump if Z = 1
(calculation
result is other
than 0)
JP C, LABEL; C = 1
(carry
occurrence)
jump
JP NC, LABEL;
Jump if C = 0 (no
carry)
JP LZ, & H703F;
Jump when

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 193

lower digit flag is
0 (lower 4 bits
are 0)
JP UZ, & H703F;
Jump when
upper digit flag is
0 (upper 4 bits
are 0)
JP NLZ, LABEL;
Jump when
lower digit flag is
1 (flag name can
be written in
LNZ)

JP
(Jump register)
undisclosed
instruction

JP $ C5 PC ← $ C5 No
change

3 + 8 = 11 The value of the main
register pair specified
by the first operand is
taken into the program
counter (PC) and
jumped to that address.
Note Although this
instruction (opcode
DEH) has been written
as "JP ($ C5)", Mr. Piotr
Piatek used a jump
instruction (opcode
DFH) by indirect
memory addressing ($
C5) by the main
register. Because it was
found, it was changed
to the current "JP $ C5"
notation.

JP $ 17;
EU format
JPW $ 17;

JP
(indirect Jump
register)
unpublished
instruction

JP ($ C5
)

PC ← ($ C5) No
change

3 + 8 = 11 Indirect designation
with the main register
pair $ C5 of the first
operand, that is, the 16-
bit data stored in the
external memory with
the address ($ C5 + 1, $
C5) is taken into the
program counter (PC)
and the address is
Jump.
In JP ($ 17), if $ 17 = 00,
$ 18 = & H70, memory
address & H7000 = &
H34, & H7001 = & H20,
the program jumps to &
H2034.

JP ($ 17);
EU format
JPW ($ 17);

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 194

JR
(Relative
Jump)

JR { ±
IM7 |
LABEL }

PC ← PC ±
IM7

No
change

3 + 6 = 9 Adds or subtracts the 7-
bit immediate value of
the operand to the
program counter (PC)
and performs a relative
jump.
Specify a numeric value
± IM7 (0 to 127) or a
label for the operand.

JR +32; + IM7
JR -32; -IM7
JR LABEL; LABEL
specified

JR
(Relative Jump
flag)

JR Flag ,
{ ± IM7
| LABEL
}

If Flag then
PC ← PC ±
IM7

No
change

3 + 6 = 9 When the flag condition
of the first operand is
satisfied, the 7-bit
immediate value of the
second operand is
added to or subtracted
from the program
counter (PC), and a
relative jump is made.
For the second
operand, specify a
numeric value ± IM7 (0
to 127) or a label.

JR Z, LABEL;
Jump if Z = 0
(result is 0)
JR NZ, LABEL;
Jump if Z = 1
(calculation
result is not 0)
JR C, LABEL;
Jump if C = 1
(carry occurs)
JR NC, LABEL;
Jump if C = 0 (no
carry)
JR LZ, LABEL;
Jump when
lower digit flag is
0 (lower 4 bits
are 0)
JR UZ, LABEL;
Jump when
upper digit flag is
0 (upper 4 bits
are 0)
JR NLZ, LABEL;
Jump when
lower digit flag is
1 (flag name can
be written in
LNZ)
JR Z, + 32; If Z = 0
(result is 0),
relative jump in
+ IM7 format

CAL
(Call)

CAL {
IM16 |
LABEL }

(SS-2) ← PC
+ 3
SS ← SS-2
PC ← IM16

No
change

3 + 3 + 6 +
3 + 3 = 18

After the address of the
next instruction is
pushed to the system
stack (SS), the 16-bit
immediate value of the
first operand is stored
in the program counter
(PC) and a subroutine
call is made to that
address.

CAL & H703F;
Unconditional
call

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 195

CAL
(Call flag)

CAL
Flag , {
IM16 |
LABEL }

If Flag then
(SS-2) ← PC
+ 3
SS ← SS-2
PC ← IM16

No
change

CALL
execution:
3 + 3 + 6 +
3 + 3 = 18
CALL not
executed:
3 + 3 + 6 =
12

When the flag condition
of the first operand is
satisfied, a subroutine
call is made to the
address specified by the
second operand.

CAL Z, & H703F;
Call if Z = 0
(result is 0)
CAL NZ, &
H703F; Call if Z =
1 (calculation
result is not 0)
CAL C, & H703F;
Call if C = 1 (carry
occurs)
CAL NC, &
H703F; Call if C =
0 (no carry)
CAL LZ, & H703F;
Call if lower digit
flag is 0 (lower 4
bits are 0)
CAL UZ, &
H703F; Call if
upper digit flag is
0 (upper 4 bits
are 0)
CAL NLZ, &
H703F; Call if
lower digit flag is
1 (flag name can
be written in
LNZ)

RTN
(Return)

RTN PC ← (SS)
SS ← SS + 2

No
change

6 + 3 + 5 =
14

Stores the 16-bit
immediate value of the
system stack (SS) in the
program counter (PC)
and returns to that
address.

RTN;
Unconditional

RTN
(Return flag)

RTN
Flag

If Flag then
PC ← (SS)
SS ← SS + 2

No
change

No return:
6
RTN: 6 + 3
+ 5 = 14

When the flag condition
of the operand is
satisfied, the 16-bit
immediate value of the
system stack (SS) is
stored in the program
counter (PC), and it
returns to that address.

RTN Z; Return if
Z = 0 (result is 0)
RTN NZ; Return if
Z = 1 (operation
result is not 0)
RTN C; Return if
C = 1 (carry
occurs)
RTN NC; Returns
if C = 0 (no carry)
RTN LZ; Return if
lower digit flag is
0 (lower 4 bits
are 0)
RTN UZ; If the
upper digit flag is
0 (the upper 4

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 196

bits are 0),
return
RTN NLZ; Return
if lower digit flag
is 1 (flag name
can be written in
LNZ)

Mnemonic Table - Block transfer / search instructions

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

BUP
(Block Up)

BUP See
explanation

No
change

? unknown Transfers the memory
block specified by IX
register = transfer
source start address
and IY register =
transfer source end
address to the area
where IZ = transfer
destination start
address.
Since transfer is
performed in ascending
order from IX address
to IY address, it must be
used with IX <IY setting.
Same operation as REP
MOVSB when CLD is
specified on X86.

BUP;

BDN
(Block Down)

BDN See
explanation

No
change

? unknown Transfers the memory
block specified by IX
register = transfer
source start address
and IY register =
transfer source end
address to the area
where IZ = transfer
destination start
address.
Since transfer is
performed in
descending order from
IX address to IY address,
it is necessary to use IX>
IY setting.
Same operation as REP
MOVSB when STD is
specified on X86.

BDN;

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 197

SUP
(Search Up)

SUP { $
C5 |
IM8 }

See
explanation

Z, C, LZ,
UZ
change

? unknown The main register value
or 8-bit immediate
value specified by the
first operand is
searched within the
memory block range
specified by IX register =
search start address
and IY register = search
end address.
If there is, set Z = 0 (Z)
and terminate the
execution on the spot.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ) and IX = IY.
Since the search is
performed in ascending
order from IX address
to IY address, it must be
used with IX <IY setting.
Same operation as
REPNZ SCASB when CLD
is specified on X86.

SUP $ 2; Specify
main register
SUP 123; 8-bit
immediate
designation

SDN
(Search Down)

SDN { $
C5 |
IM8 }

See
explanation

Z, C, LZ,
UZ
change

? unknown The main register value
or 8-bit immediate
value specified by the
first operand is
searched within the
memory block range
specified by IX register =
search start address
and IY register = search
end address.
If there is, set Z = 0 (Z)
and terminate the
execution on the spot.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ) and IX = IY.
Since the search is
performed in
descending order from
IX address to IY address,
it is necessary to use IX>
IY setting.
Same operation as
REPNZ SCASB when STD
is specified on X86.

SDN $ 2; Specify
main register
SDN 123; 8-bit
immediate
designation

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 198

BUPS
(Block Up &
Search)
(undisclosed
instruction)

BUPS
IM8

See
explanation

Z, C, LZ,
UZ
change

? unknown The memory block
specified by IX register =
transfer source start
address and IY register
= transfer source end
address is transferred
to the area where IZ =
transfer destination
start address.
During transfer, when
the transfer data is
searched and the same
data as IM8 in operand
1 is detected, the
instruction execution
ends at Z = 0 (Z) after
the data is transferred.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ) and IX = IY.
Since the search is
performed in ascending
order from IX address
to IY address, it must be
used with IX <IY setting.

BUPS & H20;
EU format
BUP & H20;

BDNS
(Block Down &
Search)
(undisclosed
order)

BDNS
IM8

See
explanation

Z, C, LZ,
UZ
change

? unknown The memory block
specified by IX register =
transfer source start
address and IY register
= transfer source end
address is transferred
to the area where IZ =
transfer destination
start address.
During transfer, when
the transfer data is
searched and the same
data as IM8 in operand
1 is detected, the
instruction execution
ends at Z = 0 (Z) after
the data is transferred.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ) and IX = IY.
Since the search is
performed in
descending order from
IX address to IY address,

BDNS & H20;
EU format
BDN & H20;

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 199

it is necessary to use IX>
IY setting.

Mnemonic Table - Block transfer / search instructions

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

NOP
(No Operation)

NOP PC ← PC + 1 No
change

6 Just increment the
program counter (PC),
and nothing else.

NOP

CLT
(Clear Timer)

CLT TM ← 0 No
change

6 Set all timer (TM
register) counters to 0.
Caution
During the last 1/65536
seconds of the 60th
second (when it
changes from 59 to 0),
the reset (clear 0) by
the CLT instruction does
not operate normally.
Therefore, in order to
perform the reset
operation reliably, it is
necessary to execute it
twice with a delay so as
to avoid the above
period.
[Example]
CLT; First execution
XRCM $ 0, $ 0,8; Delay
processing
CLT; Second execution
(can be reset reliably by
the first or second CLT)

CLT

FST
(Fast mode)

FST See
explanation

No
change

6 Use the system clock
without dividing it.
(High-speed operation
mode) The
system normally
operates in high-speed
mode.

FST

SLW
(Slow mode)

SLW See
explanation

No
change

6? Use the system clock
divided by 1/16. (Low
Power mode)
Note that if you return
to the system while
executing the SLW
instruction (low speed
state), you will run out
of control.
The LCD port clock

SLW

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 200

frequency is not
changed even in the
low-speed mode, and
the bus is confused
during LCD access.
BASIC seems to be able
to maintain the low-
speed mode unless LCD
access occurs. In the
PB-1000, when the
system interrupt
handling routine is
executed, it is
automatically reset to
high-speed mode.

OFF
(OFF)

OFF See
explanation

APO bit
← SW
bit
(APO bit
is
cleared
when
the
power is
turned
on)

6? Turn off the VDD power
supply of the internal
logic.
Executing this
command changes the
following register
values.

• PC = 0
• IX, IY, IZ = 0
• UA = 0
• IA = 0 However,

KO1 pin (BRK
key input
signal) is
selected.

• IE = Bits 0, 1, 5,
6, and 7 are
cleared to 0.

Only the following
interrupts are valid.

• Power ON
control by 1-
minute timer
(depending on
the state of bit
5 of the IB
register)

• Power on by
power switch
ON event.
Or, power is
turned on by
BRK key event
when SW is ON.

OFF

TRP
(TRaP)

TRP See
explanation

No
change

6? When the TRP
instruction (& HFF) is
fetched, the address

TRP

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 201

where the TRP
instruction is written is
saved in the SS stack,
and the process from
the fixed address (&
H6FFA for PB-1000) is
executed.
Execution returns from
the address following
the TRP instruction by
the RTN instruction.

CANI
(CANcel
Interrupt)

CANI See
explanation

No
change

6? Of the hardware
interrupt request
latches, the one with
the highest priority is
cleared.

CANI

RTNI
(ReTurN from
Interrupt)

RTNI See
explanation

No
change

6 + 3 + 5 =
14?

Return from interrupt
processing.
Store the contents of
the system stack (SS) in
the program counter
(PC), return to that
address, and add 2 to
the system stack (SS).
When this processing is
executed, the
corresponding interrupt
status flag in the IB
register (Bit4 to Bit0) is
cleared to zero.

RTNI

Mnemonic Table - Multibyte transfer instruction (2 to 8 bytes) not disclosed

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
3 (operand 2 for PHUM, PHSM, PPUM, PPSM).
With this single command, data of up to 8 bytes (64 bits) can be transferred.
The number that can be specified for operand 3 (operand 2 for PHUM, PHSM, PPUM,
PPSM) is 1 to 8. However, if a value smaller than 2 (= 1) is set, execution will be 2. HD61 is
designed to output an error when 1 is specified.
Second, even when the specific index register SIR is used as an operand, neither the
instruction code nor the operation clock is reduced.

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

LDM
(LoaD Multi-
byte register)

LDM $
C5 , $
C5 ,
IM3 [,
(JR)
LABEL]

opr1 @ $ C5
(IM3) ←
opr2 @ $ C5
(IM3)

No
change

3 + 3 + 11
+ 5 * (IM3-
2) = 17 + 5
* (IM3-2)
(JR: +3)

Transfers the contents
of the main register
block starting from $ C5
of operand 1, starting
from $ C5 of operand 1,
starting with $ C5 of
operand 2 and the
number of IM3 bytes

LDM $ 0, $ 8,6;
The contents of $
8 to $ 13 are
stored in $ 0 to $
5.
LDM $ 0, $ 8,6, JR
LABEL; The
contents of $ 8 to

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 202

specified by operand 3.
If the last operand has a
label, a relative jump is
made after the transfer.
(JR tag can be omitted)
For example, LDM $ 2, $
6, 3

• $ 2 ← $ 6
• $ 3 ← $ 7
• $ 4 ← $ 8

And works.

$ 13 are stored in
$ 0 to $ 5. (jump
extension)
LDM $ 0, $ SX, 6;
Indirect
designation by
SIR
LDM $ 0, $ SX, 6,
JR LABEL; Indirect
specification by
SIR (jump
extension)
KC format
LDW $ 0, $ 8 (6);
The contents of $
8 to $ 13 are
stored in $ 0 to $
5.
LDW $ 0, $ 8 (6),
JR LABEL; The
contents of $ 8 to
$ 13 are stored in
$ 0 to $ 5. (jump
extension)
LDW $ 0, $ SX (6);
Indirect
designation by
SIR
LDW $ 0, $ SX (6),
JR LABEL; Indirect
specification by
SIR (jump
extension)
EU format
LDL $ 0, $ 8, L6;
The contents of $
8 to $ 13 are
stored in $ 0 to $
5.
LDL $ 0, $ 8, L6,
J.LABEL; The
contents of $ 8 to
$ 13 are stored in
$ 0 to $ 5. (jump
extension)
LDL $ 0, # 0, L6;
Indirect
designation by SR
LDL $ 0, # 0, L6,
J.LABEL; Indirect
specification by
SR (jump
extension)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 203

LDM
(LoaD Multi-
byte memory)

LDM $
C5 , (IR
± $ C5),
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← (IR ± $
C5) (IM3)

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)
(JR: +3)

Transfers the contents
of consecutive external
memory data for the
number of IM3 bytes
specified by operand 3
to the register block
starting at $ C5 of
operand 1, with (IR + $
C5) of operand 2 as the
start address.
For example, when IX =
& H7000, $ 0 = 1, LDM $
2, (IX + $ 0), 3 performs
the following operation.

• $ 2 ← (& H7001
memory
contents)

• $ 3 ← (& H7002
memory
contents)

• $ 4 ← (& H7003
memory
contents)

• IX ← & H7000
(no change)

LDM $ 0, (IX ± $
C5), IM3
LDM $ 0, (IZ ± $
C5), IM3
LDM $ 0, (IX ± $
SIR), IM3;
Indirect
designation by
SIR
LDM $ 0, (IZ ± $
SIR), IM3;
Indirect
designation by
SIR
KC format
LDW $ 0, (IX ± $
C5) (IM3)
LDW $ 0, (IZ ± $
C5) (IM3)
LDW $ 0, (IX ± $
SIR) (IM3);
Indirect
designation by
SIR
LDW $ 0, (IZ ± $
SIR) (IM3);
Indirect
designation by
SIR
EU format
LDL $ 0, (IX ± $
C5), IM3
LDL $ 0, (IZ ± $
C5), IM3
LDL $ 0, (IX ± #
0), IM3; Indirect
designation by SR
(# 0- # 2)
LDL $ 0, (IZ ± # 0),
IM3; Indirect
specification by
SR (# 0- # 2)

LDIM
(LoaD
Increment
Multi byte)

LDIM $
C5 , (IR
± A),
IM3

$ C5 (IM3)
← (IR ± A)
(IM3)
IR ← IR ± A
+ IM3

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)

After storing the
contents of external
memory (IM3 byte)
starting from (IR ± A) in
the main register block
starting at $ C5, add IR
to ± A and IM3.
A can be specified only
for $ C5 (including
indirect specification by

LDIM $ 4, (IX + $
2), 6
LDIM $ 4, (IX- $
SX), 6; Indirect
designation by
SIR
KC format
LDIW $ 4, (IX + $
2) (6)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 204

SIR).
For example, when IX =
& H7000, $ 0 = 1, LDIM
$ 2, (IX + $ 0), 3
performs the following
operation.

• $ 2 ← (& H7001
memory
contents)

• $ 3 ← (& H7002
memory
contents)

• $ 4 ← (& H7003
memory
contents)

• IX ← & H7004
(last accessed
address + 1
enters)

LDIW $ 4, (IX- $
SX) (6); Indirect
designation by
SIR
EU format
LDIL $ 4, (IX + $
2), L6
LDIL $ 4, (IX- # 0),
L6; Indirect
designation by SR

LDDM
(LoaD
Decrement
Multi byte)

LDDM $
C5 , (IR
± A),
IM3

$ C5 (-IM3)
← (IR ± A)
(-IM3) IR ←
IR ± A-(IM3-
1)

No
change

3 + 3 + 6 +
3 + 3 + 3 *
(IM3-2) =
18 + 3 *
(IM3-2)

After storing the
contents of external
memory (IM3 byte)
starting from (IR ± A) of
operand 2 in main
register block $ C5 to $
C5- (IM3-1) of operand
1, IR contains IR ± A
Substitute-(IM3-1).
A can be specified only
for $ C5 (including
indirect specification by
SIR).
Note that LDDM differs
from LDM and LDIM in
that the transfer
direction is the reverse
direction (decrement
direction).
For example, when IX =
& H7000, $ 0 = 1, LDDM
$ 3, (IX + $ 0), 3
performs the following
operation.

• $ 3 ← (& H7001
memory
contents)

• $ 2 ← (& H7000
memory
contents)

• $ 1 ← (& H6FFF
memory
contents)

LDDM $ 7, (IX + $
2), 6
LDDM $ 7, (IZ- $
SX), 6; Indirect
designation by
SIR
KC format
LDMW $ 7, (IX +
$ 2) (6)
LDMW $ 7, (IZ- $
SX) (6); Indirect
designation by
SIR
EU format
LDDL $ 4, (IX + $
2), L6
LDDL $ 4, (IZ- #
0), L6; Indirect
designation by SR

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 205

• IX ← & H6FFF
(Enter the last
accessed
address)

LDCM
(LoaD Check
Multi byte:
undisclosed
instruction)

LDCM $
C5 , A ,
IM3 [,
(JR)
LABEL]

No
Operation
(Do
nothing)

No
change

3 + 3 + 11
+ 5 * (IM3-
2) = 17 + 5
* (IM3-2)
(JR: +3)

Operands are specified
in the same format as
the LDM instruction,
but nothing is actually
processed and only
instruction decoder
operation (operation to
advance the program
counter after
execution) is
performed.
Neither flag nor register
contents are changed.
(Delay processing is
possible like the NOP
instruction)
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, jump relative. (JR
tag can be omitted)

LDCM $ 4, $ 2,6;
Register
specification
LDCM $ 4, $ SX,
6; Indirect
designation by
SIR
LDCM $ 2, $ 3,6,
LABEL; Register
specification +
Jump expansion
LDCM $ 4, $ SX,
6, LABEL; Indirect
designation by
SIR + Jump
expansion
KC format
LDCW $ 4, $ 2
(6); Register
specification
LDCW $ 4, $ SX
(6); Indirect
designation by
SIR
LDCW $ 2, $ 3
(6), LABEL;
Register
specification +
Jump expansion
LDCW $ 4, $ SX
(6), LABEL;
Indirect
designation by
SIR + Jump
expansion
EU format
LDCL $ 4, $ 2, L6;
Register
specification
LDCL $ 4, # 0, L6;
Indirect
designation by
SIR
LDCL $ 2, $ 3, L6,
LABEL; Register
specification +
Jump expansion

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 206

LDCL $ 4, # 0, L6,
LABEL; Indirect
designation by
SIR + Jump
expansion

STM
(STore Multi
byte memory)

STM $
C5 , (IR
± A),
IM3

$ C5 (IM3)
→ (IR ± A)
(IM3)

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)

Stores the contents of
the main register block
(IM3 byte) starting from
$ C5 of operand 1 to the
external memory at the
address specified by
operand 2.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
For example, when IX =
& H7000, $ 0 = 1, STM $
2, (IX + $ 0), 3 performs
the following
operations.

• $ 2 → (memory
at & H7001)

• $ 3 → (memory
at & H7002)

• $ 4 → (memory
at & H7003)

• IX ← & H7000
(no change)

STM $ 4, (IX + $
2), 6
STM $ 4, (IZ- $
SY), 6; Indirect
designation by
SIR
KC format
STW $ 4, (IX + $
2) (6)
STW $ 4, (IZ- $
SY) (6); Indirect
designation by
SIR
EU format
STL $ 4, (IX + $ 2),
L6
STL $ 4, (IZ- # 1),
L6; Indirect
designation by SR

STIM
(STore
Increment
Multi byte)

STIM $
C5 , (IR
± A),
IM3

$ C5 (IM3)
→ (IR ± A)
(IM3)
IR ← IR ± A
+ IM3

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)

Stores the contents of
the main register block
(IM3 byte) starting from
$ C5 of operand 1 to the
external memory at the
address specified by
operand 2.
After data transfer, IR ±
A + IM3 is assigned to
IR.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
For example, when IX =
& H7000, $ 0 = 1, STIM
$ 2, (IX + $ 0), 3
performs the following
operation.

• $ 2 → (memory
at & H7001)

• $ 3 → (memory
at & H7002)

STIM $ 4, (IX + $
2), 6
STIM $ 4, (IZ- $
SY), 6; Indirect
designation by
SIR
KC format
STIW $ 4, (IX + $
2) (6)
STIW $ 4, (IZ- $
SY) (6); Indirect
designation by
SIR
EU format
STIL $ 4, (IX + $
2), L6
STIL $ 4, (IZ- # 1),
L6; Indirect
designation by SR

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 207

• $ 4 → (memory
at & H7003)

• IX ← & H7004
(last accessed
address + 1)

STDM
(STore
Decrement
Multi byte)

STDM $
C5 , (IR
± A),
IM3

$ C5 (-IM3)
→ (IR ± A)
(-IM3) IR ←
IR ± A-(IM3-
1)

No
change

3 + 3 + 6 +
3 + 3 + 3 *
(IM3-2) =
18 + 3 *
(IM3-2)

Store the contents of
the main register block
(IM3 byte) starting from
$ C5 of operand 1 in the
external memory with
(IR ± A) as the start
address, and then
assign IR ± A- (IM3-1) to
IR.
Note that the STDM
transfer direction is the
reverse direction
(decrement direction)
of STM and STIM.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
For example, when IX =
& H7000, $ 0 = 1, STDM
$ 2, (IX + $ 0), 3
performs the following
operation.

• $ 2 → (memory
at & H7001)

• $ 3 → (& H7000
memory)

• $ 4 → (memory
at & H6FFF
address)

• IX ← & H6FFF
(the last
address
accessed)

STDM $ 4, (IX + $
2), 6
STDM $ 4, (IZ- $
SY), 6; Indirect
designation by
SIR
KC format
STMW $ 4, (IX + $
2) (6)
STMW $ 4, (IZ- $
SY) (6); Indirect
designation by
SIR
EU format
STDL $ 4, (IX + $
2), L6
STDL $ 4, (IZ- #
1), L6; Indirect
designation by SR

PPSM
(PoP by
System stack
pointer Multi
byte)

PPSM $
C5 ,
IM3

$ C5 (IM3)
← (SS)
(IM3)
SS ← SS +
IM3

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)

SS is the start address,
the contents of the IM3
byte external memory
address block are
stored in the main
register block of
operand 1, and IM3 is
added to SS.
For example, PPSM $
2,6 performs the
following operations.

• (SS) → $ 2
• (SS + 1) → $ 3

PPSM $ 2,6
KC format
PPSW $ 2 (6)
EU format
PPSL $ 2, L6

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 208

• (SS + 2) → $ 4
• (SS + 3) → $ 5
• (SS + 4) → $ 6
• (SS + 5) → $ 7
• SS ← SS + 6

PPUM
(PoP by User
stack pointer
Multi byte)

PPUM $
C5 ,
IM3

$ C5 (IM3)
← (US)
(IM3)
US ← US +
IM3

No
change

3 + 3 + 6 +
3 + 5 + 3 *
(IM3-2) =
20 + 3 *
(IM3-2)

Stores the contents of
the IM3 byte external
memory address block
in the main register
block of operand 1 and
adds IM3 to US.
For example, PPUM $
2,6 has the following
behavior.

• (US) → $ 2
• (US + 1) → $ 3
• (US + 2) → $ 4
• (US + 3) → $ 5
• (US + 4) → $ 6
• (US + 5) → $ 7
• US ← US + 6

PPUM $ 2,6
KC format
PPUW $ 2 (6)
EU format
PPUL $ 2, L6

PHSM
(PusH System
stack pointer
Multi byte)

PHSM $
C5 ,
IM3

$ C5 (-IM3)
→ (SS-1) (-
IM3)
SS ← SS-
IM3

No
change

3 + 3 + 6 +
3 + 3 + 3 *
(IM3-2) =
18 + 3 *
(IM3-2)

Saves the contents of
the main register block
of operand 1 to the
external memory whose
address is SS-1 to SS-
IM3 (push).
At this time, the
transfer direction of the
main register and SS is
the descending order
(decrement) direction.
After saving the data, SS
is subtracted by IM3.
For example, PHSM $
7,6 operates as follows.

• $ 7 → (SS-1)
• $ 6 → (SS-2)
• $ 5 → (SS-3)
• $ 4 → (SS-4)
• $ 3 → (SS-5)
• $ 2 → (SS-6)
• SS ← SS-6

PHSM $ 7,6
KC format
PHSW $ 7 (6)
EU format
PHSL $ 2, L6

PHUM
(PusH User
stack pointer
Multi byte)

PHUM
$ C5 ,
IM3

$ C5 (-IM3)
→ (US-1) (-
IM3)
US ← US-
IM3

No
change

3 + 3 + 6 +
3 + 3 + 3 *
(IM3-2) =
18 + 3 *
(IM3-2)

The contents of the
main register block of
operand 1 are saved to
the external memory
whose addresses are
US-1 to US-IM3 (push).
At this time, the
transfer direction of the

PHUM $ 7,6
KC format
PHUW $ 7 (6)
EU format
PHUL $ 2, L6

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 209

main register and US is
the decrement
direction.
After saving the data,
US subtracts IM3.
For example, PHUM $
7,6 performs the
following operations.

• $ 7 → (US-1)
• $ 6 → (US-2)
• $ 5 → (US-3)
• $ 4 → (US-4)
• $ 3 → (US-5)
• $ 2 → (US-6)
• US ← US-6

STLM
(STore Lcd
data port
Multi byte:
undisclosed
instruction)

STLM $
C5 ,
IM3

$ C5 (IM3)
→ LCD data
port

No
change

3 + 3 + 22
+ 8 * (IM3-
2) = 28 + 3
* (IM3-2)

Operand $ C5 to $ C5 +
(IM3-1) are output to
the LCD data area.
Output is performed in
order of 8 bits.

STLM $ 2,6
KC format
STLW $ 2 (6)
EU format
OCBL $ 2,6

LDLM
(LoaD Lcd data
port Multi
byte:
undisclosed
instruction)

LDLM $
C5 ,
IM3

$ C5 (IM3)
← LCD data
port

No
change

3 + 3 + 22
+ 8 * (IM3-
2) = 28 + 3
* (IM3-2)

Assign the value of the
LCD data port to $ C5 to
$ C5 + (IM3-1) of
operand 1 according to
the transfer protocol
set in advance in LCDC.
Reading is performed in
4-bit units, so when the
graphic data on the
screen is read, the
upper and lower bits
are switched in 4-bit
units.
(Depending on the data
transfer protocol
settings, the read value
can be output directly
to the LCD.) The
reading procedure is as
follows.

(1) Specify drawing
mode (anything)
and LCD coordinate
position to LCDC.
(STLM after PPO &
HDF)

(2) Set read command
(& HE1) to LCDC.
(STL & HE1 after
PPO & hDF)

LDLM $ 2,6
KC format
LDLW $ 2 (6)
EU format
ICBL $ 2,6

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 210

(3) Execute LDLM with
data RAM specified.
(LDLM after PPO &
HDE)

PPOM
(Put lcd
control POrt
Multi byte:
undisclosed
instruction)

PPOM $
C5 ,
IM3

$ C5 (IM3)
→ LCD
control Port

No
change

3 + 3 + 11
+ 8 * (IM3-
2) = 17 + 8
* (IM3-2)?

Outputs the contents of
operand 1 main
registers $ C5 to $ C5 +
(IM3-1) to the LCD
control port.
Output is performed in
order of 8 bits.

PPOM $ 2,6
KC format
PPOW $ 2 (6)
EU format
PCBL $ 2,6

PSRM
(Put Specific
index Register
Multi byte)

PSRM
SIR , $
C5 ,
IM3

SIR ← $ C5
(IM3)

No
change

3 + 3 + 11
= 17

The contents of
operand $ 2 registers $
C5 to $ C5 + (IM3-1) are
stored in the SIR
specific index register.
Since the data is
overwritten and as a
result the contents of $
(C5 + (IM3-1)) are
written to the SIR, this
instruction is essentially
unnecessary.
SIR = SX, SY, SZ
For example, when
PSRM SX, $ 2,3 is
executed with $ 2 = 0, $
3 = 1, $ 4 = 2, $ (2 + 3-1)
= $ 4 = 2 Assigned.
Refer to PSR and PSRW
for
precautions when using
this instruction .

PSRM SX, $ 2,
IM3
KC format
PSRW SX, $ 2
(IM3)
EU format
PRAL # 0, $ 2,
IM3

Mnemonic Table - Multi-byte arithmetic operation instruction (2 to 8 bytes) not
disclosed

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
3 (INVM and CMPM are operand 2).
Arithmetic operations up to 8 bytes (64 bits) can be performed with this single instruction.
Strictly speaking, INVM and CMPM are classified into shift instructions, but they are
explained here because they are easier to understand with arithmetic instructions.
The number that can be specified for operand 3 (operand 2 for INVM and CMPM) is 1 to 8,
but if a value smaller than 2 (= 1) is set, execution will be 2. HD61 is designed to output an
error when 1 is specified.
Second, even when the specific index register SIR is used as an operand, neither the
instruction code nor the operation clock is reduced.
The flag behavior seems to be as follows, but it is unknown whether this is accurate.
Z : 0 if all bits are 0 as a result of operation.

C : 1 when there is a carry or borrow from the most significant bit (MSB).

LZ : 0 when the lowest 4 bits of the lowest 8 bits are 0.

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 211

UZ : 0 when the upper 4 bits of the most significant 8 bits are 0.

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

INVM
(INVert Multi
byte)

INVM $
C5 ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← NOT ($
C5 (IM3))

Z, C = 1,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

The contents of the
main register block
(IM3 byte) specified by
operand 1 are bit-
inverted (1's
complement).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

INVM $ 2,6
INVM $ 2,6,
LABEL; Jump
expansion
KC format
INVW $ 2 (6)
INVW $ 2 (6), JR
LABEL; Jump
expansion
EU format
INVL $ 2, L6
INVL $ 2, L6,
LABEL; Jump
expansion

CMPM
(CoMPlement
Multi byte)

CMPM
$ C5 ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← NOT ($
C5 (IM3)) +
1

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

The contents of the
main register block
(IM3 byte) specified by
operand 1 are bit-
inverted + 1 (2's
complement).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

CMPM $ 2,6
CMPM $ 2,6,
LABEL; Jump
expansion
KC format
CMPW $ 2 (6)
CMPW $ 2 (6), JR
LABEL; Jump
expansion
EU format
CMPL $ 2, L6
CMPL $ 2, L6,
LABEL; Jump
expansion

ADBM
(ADd Bcd
Multi byte)

ADBM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) + A
(IM3) (BCD
calculation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD adds the IM3 byte
length $ C5 register
block of operand 1 and
the IM3 byte length A
register block specified
by operand 2 and stores
the result in the A
block.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ADBM $ 8, $ 0,6;
Main registers
ADBM $ 8, $ SZ,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format
ADBW $ 8, $ 0
(6); Main
registers
ADBW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 212

register + SIR
(with Jump
extension)
EU format
ADBL $ 8, $ 0, L6;
Main registers
ADBL $ 8, # 2, L6,
J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

ADBM
(ADd Bcd
immediate
Multi byte)

ADBM $
C5 ,
IM5 ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) + IM5
(BCD
calculation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD adds the contents
of the main register
block (IM3 byte)
starting from $ C5 of
operand 1 and the 5-bit
value of operand 2 and
stores the result in the
$ C5 block.
Operand 2 can specify a
BCD value from 0 to 31.
The calculation method
of the BCD immediate
value IM5 specified by
operand 2 is Bit4 * &
H10 + HextoBCD (Bit3
to Bit0).
For example, if IM5 = &
H1A, the number to be
added is 1 * & H10 + &
H10 (← 10 is expressed
as a hexadecimal BCD) =
& H20, and & H20 is
BCD added to the main
register $ C5 (IM3) .
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ADBM $ 4, &
H1F, 6; Main
register + IM5 (In
the example,
add 1 * & H10 +
HextoBCD (& HF)
= & H25)
ADBM $ 4,15,6,
LABEL; Jump
expansion
KC format
ADBW $ 4, &
H1F (6); Main
register + IM5
ADBW $ 4,15 (6),
JR LABEL; Jump
expansion
EU format
ADBL $ 4, & H1F,
L6; Main register
+ IM5
ADBL $ 4,15, L6,
J.LABEL; Jump
expansion

ADBCM
(ADd Bcd
Check Multi
byte)

ADBCM
$ C5 , A
, IM3 [,
(JR)
LABEL]

$ C5 (IM3) +
A (IM3)
(BCD
operation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD adds the IM3 byte
length $ C5 register
block of operand 1 and
the IM3 byte length A
register block specified
by operand 2, but does
not store the result
anywhere.
A can be specified only
for $ C5 (including

ADBCM $ 8, $
0,6; Main
registers
ADBCM $ 8, $ SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 213

indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

KC format
ADBCW $ 8, $ 0
(6); Main
registers
ADBCW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
ADBCL $ 8, $ 0,
L6; Main
registers
ADBCL $ 8, # 2,
L6, J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

SBBM
(SuB Bcd Multi
byte)

SBBM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) -A
(IM3) (BCD
operation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD subtracts the IM3
byte-length A register
block specified by
operand 2 from the IM3
byte-length $ C5
register block of
operand 1 and stores
the result in the A
block.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

SBBM $ 8, $ 0,6;
Main registers
SBBM $ 8, $ SZ,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format
SBBW $ 8, $ 0
(6); Main
registers
SBBW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
SBBL $ 8, $ 0, L6;
Main registers
SBBL $ 8, # 2, L6,
J.LABEL; Main
register + SR
indirect

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 214

specification
(with Jump
extension)

SBBM
(SuB Bcd
immediate
Multi byte)

SBBM $
C5 ,
IM5 ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) -IM5
(BCD
calculation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD adds the 5-bit
value of operand 2 from
the contents of the
main register block
(IM3 byte) starting from
$ C5 of operand 1 and
stores the result in the
$ C5 block.
Operand 2 can specify a
BCD value from 0 to 31.
The calculation method
of the BCD immediate
value IM5 specified by
operand 2 is Bit4 * &
H10 + HextoBCD (Bit3
to Bit0).
For example, if IM5 = &
H1A, the number to be
added is 1 * & H10 + &
H10 (← 10 is expressed
as a hexadecimal BCD) =
& H20, and & H20 is
BCD added to the main
register $ C5 (IM3) .
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

SBBM $ 4, &
H1F, 6; Main
register + IM5 (In
the example, 1 *
& H10 +
HextoBCD (& HF)
= & H25 is
subtracted)
SBBM $ 4,15,6,
LABEL; Jump
expansion
KC format
SBBW $ 4, & H1F
(6); Main register
+ IM5
SBBW $ 4,15 (6),
JR LABEL; Jump
expansion
EU format
SBBL $ 4, & H1F,
L6; Main register
+ IM5
SBBL $ 4,15, L6,
J.LABEL; Jump
expansion

SBBCM
(SuB Bcd
Check Multi
byte)

SBBCM
$ C5 , A
, IM3 [,
(JR)
LABEL]

$ C5 (IM3) -
A (IM3)
(BCD
operation)

Z, C, LZ,
UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

BCD subtracts the IM3
byte length A register
block specified by
operand 2 from the IM3
byte length $ C5
register block of
operand 1, but does not
store the result
anywhere.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

SBBCM $ 8, $
0,6; Main
registers
SBBCM $ 8, $ SZ,
6, LABEL;
Indirect
designation with
main register +
SIR (with Jump
extension)
KC format
SBBCW $ 8, $ 0
(6); Main
registers
SBBCW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 215

(with Jump
extension)
EU format
SBBCL $ 8, $ 0,
L6; Main
registers
SBBCL $ 8, # 2,
L6, J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

ANM
(ANd Multi
byte)

ANM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) and A
(IM3)

Z, C = 0,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

The AND of the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes) is taken, and the
result is stored in the $
C5 block.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ANM $ 8, $ 0,6;
Main registers
ANM $ 8, $ SZ, 6,
LABEL; Main
register +
Indirect
specification
with SIR (with
Jump extension)
KC format
ANW $ 8, $ 0 (6);
Main registers
ANW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
ANL $ 8, $ 0, L6;
Main registers
ANL $ 8, # 2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

ANCM
(ANd Check
Multi byte)

ANCM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
and A (IM3)

Z, C = 0,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

ANDs the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
but does not store the
result anywhere.
A can be specified only

ANCM $ 8, $ 0,6;
Main registers
ANCM $ 8, $ SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 216

for $ C5 (including
indirect specification by
SIR).
However, the flag
changes.
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

KC format
ANCW $ 8, $ 0
(6); Main
registers
ANCW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
ANCL $ 8, $ 0, L6;
Main registers
ANCL $ 8, # 2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

NAM
(NAnd Multi
byte)

NAM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) nand
A (IM3)

Z, C = 1,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

NAND the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
and store the result in
the $ C5 block.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

NAM $ 8, $ 0,6;
Main registers
NAM $ 8, $ SZ, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format
NAW $ 8, $ 0 (6);
Main registers
NAW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
NAL $ 8, $ 0, L6;
Main registers
NAL $ 8, # 2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 217

NACM
(NAnd Check
Multi byte)

NACM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
nand A
(IM3)

Z, C = 1,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

NAND the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
but do not store the
result anywhere.
However, the flag
changes.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

NACM $ 8, $ 0,6;
Main registers
NACM $ 8, $ SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)
KC format
NACW $ 8, $ 0
(6); Main
registers
NACW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
NACL $ 8, $ 0, L6;
Main registers
NACL $ 8, # 2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

ORM
(OR Multi
byte)

ORM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) or A
(IM3)

Z, C = 1,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

Performs a logical OR
operation on the
contents of operand 1's
$ C5 block and operand
2's A block (both A and
B are IM3 bytes) and
stores the result in the
$ C5 block.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ORM $ 8, $ 0,6;
Main registers
ORM $ 8, $ SZ, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format
ORW $ 8, $ 0 (6);
Main registers
ORW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 218

ORL $ 8, $ 0, L6;
Main registers
ORL $ 8, # 2, L6,
J.LABEL; Main
register +
Indirect
specification
with SR (Jump
extension
available)

ORCM
(OR Check
Multi byte)

ORCM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
or A (IM3)

Z, C = 1,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

Performs a logical OR
(OR) operation on the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), but the result is
not stored anywhere.
However, the flag
changes.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ORCM $ 8, $ 0,6;
Main registers
ORCM $ 8, $ SZ,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format
ORCW $ 8, $ 0
(6); Main
registers
ORCW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
ORCL $ 8, $ 0, L6;
Main registers
ORCL $ 8, # 2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

XRM
(eXclusive oR
Multi byte)

XRM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
← $ C5
(IM3) xor A
(IM3)

Z, C = 0,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

Performs an XOR
operation on the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), and stores the
result in the $ C5 block.
A can be specified only

XRM $ 8, $ 0,6;
Main registers
XRM $ 8, $ SZ, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)
KC format

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 219

for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

XRW $ 8, $ 0 (6);
Main registers
XRW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)
EU format
XRL $ 8, $ 0, L6;
Main registers
XRL $ 8, # 2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

XRCM
(eXclusive oR
Check Multi
byte)

XRCM $
C5 , A ,
IM3 [,
(JR)
LABEL]

$ C5 (IM3)
xor A (IM3)

Z, C = 0,
LZ, UZ
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

(JR: +3)

Performs an XOR
operation on the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), but the result is
not stored anywhere.
However, the flag
changes.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

XRCM $ 8, $ 0,6;
Main registers
XRCM $ 8, $ SZ,
6, LABEL; Main
register + SIR
indirect
specification
(with Jump
extension)
KC format
XRCW $ 8, $ 0
(6); Main
registers
XRCW $ 8, $ SZ
(6), LABEL; Main
register + SIR
indirect
specification
(with Jump
extension)
EU format
XRCL $ 8, $ 0, L6;
Main registers
XRCL $ 8, # 2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

Kapitel: VII. HD61700 Cross Assembler

7-4 Mnemonic Seite 220

Mnemonic Table - Multibyte shift instruction (2 to 8 bytes) not disclosed

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
2. This single instruction can shift up to 8 bytes (64 bits), and only DIUM, DIDM, BYUM, and
BYDM are available.
The bit shift system (BIUM, BIDM) and the rotate system (ROUM, RODM) are not prepared,
and BUP and BDN are assigned to the instruction code to which they should have been
assigned.

Mnemonic Format Function Flag
Number of

Clocks
Description Example Format

DIUM
(Digit Up Multi
byte)

DIUM $
C5 ,
IM3

See figure Z, C = 0,
LZ = 0,
UZ
changes

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

The contents of the
register block $ C5 to $
(C5 + (IM3-1)) starting
with the main register
number specified by
operand 1 are increased
4 bits to the left, and 0
is placed in the lowest 4
bits.

DIUM $ 2,6; The
register block is
$ 2 to $ 7 (6byte
ascending
order).
KC format
DIUW $ 2 (6)
EU format
DIUL $ 2, L6

DIDM
(Digit Down
Multi byte)

DIDM $
C5 ,
IM3

See figure Z, C = 0,
LZ, UZ =
0
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

The contents of the
register blocks $ C5 to $
(C5- (IM3-1)) starting
with the main register
number specified by
operand 1 are lowered
4 bits to the right, and 0
is entered in the most
significant 4 bits.

DIDM $ 7,6;
Register block is
$ 7 to $ 2 (6byte
descending
order).
KC format
DIDW $ 7 (6)
EU format
DIDL $ 7, L6

BYUM
(BYte Multi
byte)

BYUM $
C5 ,
IM3

See figure Z, C = 0,
LZ = 0,
UZ
changes

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

The contents of the
register block $ C5 to $
(C5 + (IM3-1)) starting
with the main register
number specified by
operand 1 are increased
8 bits to the left, and all
0s are entered in the
least significant byte.

BYUM $ 2,6; The
register block is
$ 2 to $ 7 (in
ascending order
of 6 bytes).
KC format
BYUW $ 2 (6)
EU format
BYUL $ 2, L6

BYDM
(BYte Multi
byte)

BYDM $
C5 ,
IM3

See figure Z, C = 0,
LZ, UZ =
0
change

3 + 3 + 11
+ 5 * (IM-
2) = 17 + 5
* (IM3-2)

The contents of the
register block $ C5 to $
(C5- (IM3-1)) starting
with the main register
number specified by
operand 1 are down 8
bits to the right, and 0 is
placed in the most
significant byte.

BYDM $ 7,6; The
register block is
$ 7 to $ 2 (6byte
descending
order).
KC format
BYDW $ 7 (6)
EU format
BYDL $ 7, L6

Kapitel: VII. HD61700 Cross Assembler

7-5 Instruction set Table Seite 221

7-5 Instruction set Table

• HD61700.PDF: HD61700 Instruction Set Table
• HD61700.PDF: HD61700 Instruction Set Table (Open in a new window)

7-6 Appendix

Output Format and Loader

This section describes the BAS format, PBF format, QL format and their loaders that the HD61 cross

assembler outputs as default (no option), / p, and / q, respectively.

For the sake of easy understanding, the list in Table 6-1 will be given in a file output in each format.

Table 6-1. Sample list

HD61700 ASSEMBLER Rev 0.41-ASSEMBLY LIST OF [quick-loader.s]

0001: 0000 ;

0002: 0000 ; quick-loader.s

0003: 0000 ; relocatble quick loader for FX-870P / VX-4

0004: 0000 ;

0005: 0000

0006: 0000 CGRAM: EQU & H153C ; address of DEFCHR $ ()

0007: 0000 LEDTP: EQU & H123C ; address of LCD dot matrix

0008: 0000

0009: 153C ORG CGRAM

0010: 153C START CGRAM

0011: 153C

0012: 153C D6403C12 PRE IZ, LEDTP

0013: 1540 D6003C15 PRE IX, CGRAM

0014: 1544 D6205315 PRE IY, CGRAM + 23

0015: 1548 D8 BUP ; BlockUP

0016: 1549 566054 PST UA, & H54

0017: 154C F7 RTN

0018: 154D ; end of program

BAS Format

The BAS format files listed in Table 6-1 are shown in Table 6-2. As can be easily understood from

Table 6-1 and Table 6-2, the BAS format is as follows.

• A text file to be included in a BASIC program.
• The first line of data consists of the machine language file name, machine language start address,

machine language end address, and machine language execution address from the beginning.
• The second and subsequent lines are machine language data, and each line consists of a string

consisting of 8 bytes expressed in hexadecimal notation and two pieces of data, the least significant
byte of the 8-byte checksum. If the last line is less than 8 bytes, no extra data is added at the end.

BAS Format Files in Table

999 DATA QUICK-LOADER.EXE, & H153C, & H154C, & H153C

Kapitel: VII. HD61700 Cross Assembler

7-6 Appendix Seite 222

1000 DATA D6403C12D6003C15,8B
1001 DATA D6205315D8566054,40
1002 DATA F7, F7

Writing a machine language prepared as data in the DATA statement in this way with a POKE statement is
common in pocket computers, especially when there is no way to read a machine language such as BLOAD
from an external device. This is the basis of how words are placed in memory. When stored as a DATA
statement, a 1-byte code requires 2 bytes even in hexadecimal format, which is not good in terms of the use
efficiency of the pocket computer memory. However, usability is generally good due to a device such as a
loader.
A loader called Trans.b is attached to the HD61 cross assembler, and the list is shown in Table 6-3.

Table 6-3. Trans.b (loader for BAS format; for PB-1000 / C, AI-1000)
 '*** ASC2BIN for PB-1000 / C, AI-1000 ***
10 CLEAR: READ F $, ST, ED, EX: A = ST: ED = ED + 1: L = 1000
20 READ A $, S $: S = 0
30 FOR I = 1 TO LEN (A $) STEP2
40 D = VAL ("& H" + MID $ (A $, I, 2)): POKE A, D
50 S = S + D: A = A + 1: NEXT
60 IF RIGHT $ (HEX $ (S), 2) <> S $ THEN BEEP: PRINT "SUM ERROR: LINE ="; L: END
70 IF A <ED THEN L = L + 1: GOTO 20
80 IF EX <> 0 THEN BSAVE F $, ST, ED-ST, EX ELSE BSAVE F $, ST, ED-ST
90 BEEP1: PRINT "FILE CREATED": END

Trans.b is for PB-1000 / C and AI-1000 and saved as a binary file using BSAVE at line number 80, but FX-870P /
VX-4 / VX-3 There is no BSAVE instruction. Therefore, to use Trans.b on FX-870P / VX-4 / VX-3, it is necessary
to comment or delete line number 80.
Line number 60 checks whether the data in each DATA statement is correct using checksum data. This helped
to make it easier to find typographical errors during program execution in an era when the Internet and
personal computer communications were not common and you had to manually enter the program published
in the magazine. Therefore, the checksum is basically useless in the present age when the network has
developed and it is no longer necessary to input another person's machine code.

PBF format

PBF format files listed in Table 6-1 are shown in Table 6-4. Although there are parts that cannot be understood
from Table 6-1 and Table 6-4, the PBF format is as follows.

• A text file to send to a pocket computer from a personal computer.
• The first line of data consists of the machine language file name, machine language start address,

machine language end address, and machine language execution address from the beginning.
• The second and subsequent lines are machine language data, consisting of a string of characters

expressed in hexadecimal notation at every 120 bytes from the start address and two pieces of
checksum for each data. If the last line is less than 120 bytes, no extra data is added at the end.

Table 6-4. PBF format file in Table 6-1

QUICK-LOADER.EXE, 5436,5452,5436

D6403C12D6003C15D6205315D8566054F7,1730

The PBF format is a text file of a machine language program used for software distribution on the home page
of CASIO PB-1000 FOREVER by Jun Amano. This file is transferred from the personal computer to the pocket
computer via RS-232C, loaded as a machine language code into the memory, and then filed on the pocket
computer side. At that time, a PBF file reception program is required on the pocket computer side.

Kapitel: VII. HD61700 Cross Assembler

7-6 Appendix Seite 223

A loader for FX-870P / VX-4 / VX-3 called TransVX.b is attached to the HD61 cross assembler. The list is shown
in Table 6-5.

Table 6-5. TransVX.b (loader for PBF format; for FX-870P / VX-4 / VX-3)
 'PbfToBinVX.BAS (c) JUN AMANO / BLUE
10 CLS: CLEAR: OPEN "COM0:" FORINPUT AS # 1
20 INPUT # 1, F $, ST, ED, EX: AD = ST: BEEP
30 PRINT "Converting:"; F $: PRINT "Start:"; HEX $ (ST); "H End:"; HEX $ (ED); "H"
40 INPUT # 1, A $, S: SUM = 0
50 FOR I = 1 TO LEN (A $) STEP2
60 A = VAL ("& H" + MID $ (A $, I, 2))
70 POKE AD, A: SUM = SUM + A: AD = AD + 1: NEXT
80 IF S <> SUM THEN PRINT "SUM ERROR": BEEP: CLOSE: END
90 IF ED> AD THEN GOTO 40
100 CLOSE: PRINT "Completed!": BEEP1
110 IF EX <> 0 THEN PRINT "Execute MODE110 ("; EX; ")";

Note that the setting value of F.COM is used for the communication parameter of TransVX.b. When changing
the setting, modify the file descriptor "COM0:" part of line number 10 . In addition, TransVX.b (for FX-870P /
VX-4 / VX-3) attached to HD61 is written in BASIC only from the viewpoint of portability, but the version
accelerated in machine language is Jun Amano. Published on his website "CASIO PB-1000 Forever!" The URL is
http://homepage3.nifty.com/lsigame/pb-1000/softlib/pbsoft1.htm
The machine language data is divided in units of 120 bytes when reading data into A $. This may be due to the
BASIC limit of 255 characters.

QL Format

QL format files listed in Table 6-1 are shown in Table 6-6. As can be understood from Table 6-1 and Table 6-6,
the QL format is as follows.

• A text file to be included in a BASIC program.
• The data of the first line is the machine language start address, machine language end address,

machine language execution address from the beginning.
• The second and subsequent lines are machine language data, and four character strings expressed in

hexadecimal notation every 6 bytes from the start address are stored in one line, and 24 bytes are
stored in one line. If the last line is less than 24 bytes, add 0 to the shortage to make it 24 bytes.

Table 6-6. QL format files in Table 6-1

1000 DATA 5436,5452,5436
1001 DATA D6403C12D600,3C15D6205315, D8566054F700,000000000000

The QL format is a data format for use with a quick loader that is about 10 times faster than loading
machine language into memory in BAS format.

The quick loader was devised by Mr. Ao, the creator of HD61.
In the HD61 cross assembler, there is no detailed explanation about the QL format, and no loader is attached,
but the list of the quick loader used in the programs that can be downloaded with "CASIO PB-1000 FOREVER!"
And "HD61700 SPIRITS" Is shown in Table 6-7.

Table 6-7. Quick loader example (QL type loader; FX-870P / VX-4)
5 'Expanded CLEAR 0.04 for VX-4 / FX-870P 2003 BLUE
100 GOSUB900: BEEP1: PRINT "MODE110 (& H"; HEX $ (EX); ")" ;: END
900 'Machine Code Loader (FX-870P / VX-4)
910 RESTORE1000: READ ST, ED, EX: C = INT ((ED-ST) / 24)

Kapitel: VII. HD61700 Cross Assembler

7-6 Appendix Seite 224

920 DEFCHR $ (252) = "D6403C12D600": DEFCHR $ (253) = "3C15D6205315"
930 DEFCHR $ (254) = "D8566054F700": MODE110 (& H153C)
940 FOR I = 0 TO C: READ A $, B $, C $, D $
950 DEFCHR $ (252) = A $: DEFCHR $ (253) = B $: DEFCHR $ (254) = C $: DEFCHR $ (255) = D $
960 POKE & H123E, (ST MOD 256): POKE & H123F, INT (ST / 256)
970 IF (ED-ST) <24 THEN POKE & H1246, & H3C + (ED-ST)
980 MODE110 (& H123C): ST = ST + 24: NEXT: CLS: RETURN

Table 6-5 shows the loader part of the extended CLEAR that secures the machine language area in the memory
with FX-870P / VX-4 that can be downloaded with "CASIO PB-1000 FOREVER!" .
Quick loader

• Load machine language data to the CGRAM in the system area at high speed with the DEFCHR $
instruction .

• The machine language loader loads the machine language (up to 24 bytes) into CGRAM to the target
address at high speed.

High speed is realized by this method.
In the case of BAS format, the 1-byte data fetched with "D = VAL (" & H "+ MID $ (A $, I, 2))" as shown in Table
6-3, line number 60 is "POKE AD, The process of writing to memory with D "is to extract the byte data
character string from the character string, digitize it, convert the BCD floating point data of the numeric
variables AD, D to the integer type with the POKE statement, and then write to the memory. The work to write
to is done inside the BASIC system, and is more complicated than the program has seen, making it inefficient.
On the other hand, the quick loader shown in Table 6-5 uses a system area as a relay point for memory
transfer, but is a ROM routine that is optimized for 6 bytes x 4 = 24 bytes in the DEFCHR $ statements of line
numbers 920, 930, and 950. After the transfer, the transfer destination address is rewritten with the line
number 960, and the machine language transfer routine performs the transfer to the target address,
minimizing unnecessary character string manipulation and numerical conversion, and speeding up. It has been
realized.
In fact, even in the BAS format, do not perform "D = VAL (" & H "+ MID $ (A $, I, 2))", store once in CGRAM in
the system area with DEFCHR $, and then transfer with PEEK, POKE It has been confirmed that the speed can
be increased by about 35% just by using the method.
The list in Table 6-1 is the source equivalent of the machine language transfer routine, and it can be confirmed
that they match by comparing line numbers 920 and 930 in Table 6-6 and Table 6-7. . The behavior is

• After specifying the transfer source start address and end address (CGRAM 24 bytes) and transfer
destination (system area LEDTP) with IX, IY, IZ ,

• Use block transfer instruction BUP to transfer 24 bytes of data and return

Perform the operation. This action transfers its own code to the LEDTP in the system area. As can be seen from
Table 6-1, since the absolute jump instruction is not used, this machine language transfer routine is relocatable
and can be executed at the transfer destination. Therefore, a routine for high-speed transfer from CGRAM to
an arbitrary address is realized by rewriting the IZ transfer destination address with a POKE statement such as
line number 960.
Although the quick loader in Table 6-7 is compact, it is difficult for humans to read for the first time, and it is
not easy to modify the program. Table 6-8 shows quick loaders with improved readability, operability, and
portability.

Table 6-8. Quick loader Example (QL loader; FX-870P / VX-4)
90 'quick-loader rewritten for readability, usability and portability
100 CLS: GOSUB 850: MODE110 (EX): END
110 '
840 'Quick Loader (FX-870P / VX-4)
845 'LDAD + 2,3: destination addr; LDAD + 6,7: source start addr; LDAD + 10,11: source end addr

Kapitel: VII. HD61700 Cross Assembler

7-6 Appendix Seite 225

850 CGRAM = & H153C: LDAD = & H1A3C: 'addr of DEFCHR $ () and Mac-loader (in SAVE / LOAD buffer)
855 DEFCHR $ (252) = "D6403C1AD600": DEFCHR $ (253) = "3C15D6205315": DEFCHR $ (254) =
"D8566054F700"
860 MODE110 (CGRAM): 'relocatable mac-loader is transfered to LDAD by itself
865 IOBF = & H1895: IOBF = PEEK (IOBF) + PEEK (IOBF + 1) * 256
870 RESTORE 1000: READ ST, ED, EX: C = INT ((ED-ST) / 24)
875 IF ED> = IOBF THEN BEEP: PRINT "Cannot alloc memory!": PRINT "Make mac area at least"; ED-ST +
1; "bytes": END
880 GOSUB 980
885 P = 0
890 FOR I = 0 TO 23
895 IF PEEK (ST + I) = PEEK (CGRAM + I) THEN P = P + 1
900 NEXT
905 IF P <> 24 THEN 915 ELSE BEEP 1: PRINT "Mac codes already loaded.": PRINT "Hit any key."
910 A $ = INKEY $: IF A $ = "" THEN 910 ELSE RETURN
915 CLS
920 ST0 = ST
925 FOR I = 0 TO C
930 POKE LDAD + 2, (ST MOD 256): POKE LDAD + 3, INT (ST / 256): 'change destination
935 IF (ED-ST) <23 THEN POKE LDAD + 10, & H3C + (ED-ST): ST = ED-23: 'change transfer size
940 MODE110 (LDAD): ST = ST + 24: 'execute data transfer by 24 bytes, basically
945 LOCATE 0,2: PRINT "BLOAD:"; ST-ST0; "bytes";
950 IF I <C THEN GOSUB 980: 'data preparation for mac-loader
955 NEXT
960 PRINT "-completed."
965 RETURN
970 '
975 '* DATPRE:' data preparation
980 READ A $, B $, C $, D $
985 DEFCHR $ (252) = A $: DEFCHR $ (253) = B $: DEFCHR $ (254) = C $: DEFCHR $ (255) = D $
990 RETURN

995 ' Line number 850 defines the start address CGRAM of DEFCHR $ and the transfer destination (execution)
address LDAD of the machine language transfer routine. Line number 845 indicates the location of the transfer
destination address, transfer source start address, and transfer source end address of the machine language
transfer routine. If the transfer destination address is changed with the POKE statement, such as line numbers
930 and 935, Good.

Kapitel: VII. HD61700 Cross Assembler

7-7 References and links Seite 226

7-7 References and Links

• (1) Ao: “HD61700 Assembly Language Manual”, http://www.geocities.jp/hd61700lab/
• (2) Piotr Piatek: "Description of the HD61700 microprocessor assembly language",

http://www.pisi.com.pl/piotr433/index.htm
• (3) Kota-chan: PJ August 1990 issue, p.35, "KC-Disassembler".
• (4) P, H, M ,: PJ December 1992, p.51, `` Assassembler ''.
• (5) Aya Toji: PJ April 1993, p.83, `` FX-870P Assembler ''.
• (6) Hakkun: PJ September 1993, p.83, `` HD61700 X-Assembler Ver.4.05 ''.
• (7) N. Hayashi: PJ February 1995, p.42, `` HD61700 X-Assembler Ver.6 ''.

Kapitel: VII. HD61700 Cross Assembler

7-8 Figure Seite 227

7-8 Figure

Kapitel: VII. HD61700 Cross Assembler

7-9 Revision information Seite 228

7-9 Revision Information

Ed.1 2011/6/12
Completed the HTML of the manual attached to HD61. The original description mistakes have been
corrected, but there is a possibility that you have made a mistake.
In the future, correction of description errors and addition of information are planned.

Kapitel: VIII. CASL

8-1 What is CASL / COMET? Seite 229

In advance:
Information about the programming language CASL, as a book or on the Internet, is only available in Japanese.
Furthermore, there is no German or English manual for the Casio FX-870P and the VX-4.

Despite extensive research, no comprehensive reference was found. The few PDFs on the Internet (Springer,
CoFI, CANape, Crosstalk) do not describe the VX-4 - CASL language.

The few CASL websites found and the "readable" pages of the original manual are listed here. The compiled
writings on CASL are just an attempt to give some insight into the language itself. For a deeper insight into the
CASL language, you probably have to learn Japanese and the ones described in Section IX. Work through the
books shown in the manuals.

Information shown in this chapter is translated from:
- Japanese WIKIPEDIA article
- Pages from the original manual
- TeamCASL website found:
 http://www5a.biglobe.ne.jp/~teamcasl/caslkozatop.htm

8-1 What is CASL / COMET?

CASL is simple implementation of CASL assembler and COMET simulator written in Perl. The CASL assembler
and the COMET simulator are designed for users to study principle operations of computers. In particular,
CASL and COMET are used in a qualifying examination called as Japan Information-Technology Engineers
Examination so that these programs would be of value for people who would like to acquire this qualification.
Since both the CASL assembler and the COMET simulator are written only in Perl version 5, these should work
on almost all operating system including UNIX flavors, MS-DOS, Windows, and Macintosh.

CASL, the Common Algebraic Specification Language, was designed by the members of CoFI, the Common
Framework Initiative for algebraic specification and development, and is a general-purpose language for
practical use in software development for specifying both requirements and design. CASL is already regarded
as a de facto standard, and various sublanguages andextensions are available for specific tasks.

COMET is the name of a virtual computer designed to be used for assembler language questions in information
processing engineer tests .

Since the assembler language depends on hardware , COMET was developed as a non- existent computer , so-
called virtual computer , to be fair to candidates for information processing engineer tests .

COMET is 16 bits per word and has five general-purpose registers , a program counter, and a flag register . Its
main memory capacity is 65536 words, and it has a two-word instruction word that is sequentially controlled .
The assembler language for COMET is called CASL, and in the assembler language section of the information
processing engineer test , the program is written in CASL .

Although COMET is a virtual computer , several simulators have been created that run on Windows OS , etc.,
and are useful for understanding the operating principles of computers .

As of 2007, COMET II , the successor to COMET , is being used in the trial . In the past tests , a virtual machine
called COMP-X was used , and the specifications are constantly being reviewed in this way for educational
considerations . Among such virtual machines , MIX, which was devised by the author of the famous book "
The Art of Computer Programming " on algorithms , is known.

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 230

WIKIPEDIA:

The Common Algebraic Specification Language (CASL) is a general-purpose specification language based on
first-order logic with induction. Partial functions and subsorting are also supported.

CASL has been designed by CoFI, the Common Framework Initiative (CoFI), with the aim to subsume many
existing specification languages.

CASL comprises four levels:

 basic specifications, for the specification of single software modules,

 structured specifications, for the modular specification of modules,

 architectural specifications, for the prescription of the structure of implementations,

 specification libraries, for storing specifications distributed over the Internet.

The four levels are orthogonal to each other. In particular, it is possible to use CASL structured and
architectural specifications and libraries with logics other than CASL. For this purpose, the logic has to be
formalized as an institution. This feature is also used by the CASL extensions.

8-2 Japanese CASL Wikipedia Article

This document describes the COMET/CASL implementation on the Casio PB-1000C which may differ from the
original specification. It is based on the Japanese Wikipedia article <http://ja.wikipedia.org/wiki/CASL> and on
the analysis of the PB-1000C ROM disassembly.

Overview

COMET is a virtual computer specially designed for educational purposes and programming ability testing in
the Japanese Information Technology Standards Examination (JITSE). CASL is an assembly language for this
computer. The revised versions of COMET and CASL, called COMET II and CASL II, are not supported by the PB-
1000C and therefore are out of the scope of this document.

COMET Specification

COMET is a virtual machine with a von Neumann architecture. It operates on words of a fixed length of 16 bits.
The processing is sequential. Negative numbers are represented in two's complement format.

The following Data Types are Supported:

1. arithmetic, refers to signed integers in range -32768 to 32767
2. logical, refers to unsigned integers in range 0 to 65535
3. character, using an 8-bit Japanese standard JIS X 0201 that defines
 encoding for Latin and Katakana characters, stored one character per word
 in the lower 8 bits while the upper 8 bits are filled with zeros

The Registers are as Follows:

1. General purpose 16-bit registers GR0, GR1, GR2, GR3, GR4

These registers contain one of the operands and store results of the arithmetic, logical and shift operations.
The other operand is a memory location referenced by the effective address, specified either directly by an
absolute address, or by a sum of an absolute address and the contents of an index register (XR). GR1 to GR4
can be used as index registers.
GR4 is used as a stack pointer. It holds the address of the top of the stack. When a value is pushed onto the
stack, GR4 is decremented by one, then the value is placed at the memory location pointed to by it. When a

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 231

value is popped off the stack, the contents of the memory location pointed to by GR4 is transferred, then GR4
is incremented by one.
An address range from #FF80 to #FFFF is allocated for the stack, but actually the stack and the object code
occupy different address spaces. Therefore it is not possible to access the object code memory with the
commands PUSH or POP, nor the stack area through an effective address.

2. Program counter PC

This register holds the memory address of the instruction currently being executed. After completing the
instruction it is incremented so as to point to the next one, except on branches, subroutine calls and
subroutine returns which load it with a new value.

3. Flag register FR

When the executed instruction is an arithmetic or logical operation, it is set to 10 (binary) if the result is
negative, 00 if positive, and 01 if zero. Similarly, for comparison instructions it is set according to the
comparison result.

Instruction Format:

All instructions have a fixed length of two 16-bit words. These 32 bits are divided into the following fields:

1. The OP field (8 bits) is the instruction opcode that specifies the operation to be performed.

2. The GR field (4 bits) specifies the number of the register to be used in the operation. It is ignored for the
branch and PUSH instructions.

3. The XR field (4 bits) specifies the number of the register whose contents is added to the adr field to form an
effective address. A value of 0 does not mean GR0, but that no address modification is performed.

4. The adr field (16 bits) specifies the memory address, optionally modified by the XR. Both the adr and XR
fields are ignored for the POP and RET instructions.

bit # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

word 1 | OP field | GR field | XR field |

word 2 | adr field |

Instruction set summary:

The items within brackets [] are optional and can be omitted.

LD GR, adr [, XR] - LoaD
Load the contents of the effective address to the specified GR register.

ST GR, adr [, XR] - STore
Store the contents of the GR register at the effective address.

LEA GR, adr [, XR] - Load Effective Address
 Calculate the effective address and store it in the GR register.

ADD GR, adr [, XR] - ADD arithmetic
Adds the contents of the effective address to the contents of the GR and stores the result in the GR. The FR is
set according to the result of the operation.

SUB GR, adr [, XR] - SUBtract arithmetic

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 232

Subtracts the contents of the effective address from the contents of the GR and stores the result in the GR.
The FR is set according to the result of the operation.

AND GR, adr [, XR]
Performs a bitwise AND operation between the contents of the GR and the contents of the effective address.
The result is stored in the GR. In other words, the operation clears the bits of the contents of GR which
corresponding bits of the contents of the effective address are cleared. The FR is set according to the result of
the operation.

OR GR, adr [, XR]
Performs a bitwise inclusive OR operation between the contents of the GR and the contents of the effective
address. The result is stored in the GR. In other words, the operation sets the bits of the contents of GR which
 corresponding bits of the contents of the effective address are set. The FR is set according to the result of the
operation.

EOR GR, adr [, XR] - Exclusive OR
Performs a bitwise exclusive OR operation between the contents of the GR and the contents of the effective
address. The result is stored in the GR. In other words, the operation toggles the bits of the contents of the GR
which corresponding bits of the contents of the effective address are set. The FR is set according to the result
of the operation.

CPA GR, adr [, XR] - ComPare Arithmetic
Compare the contents of the GR with the contents of the effective address. The FR is set to 00 if the contents
of GR is larger, 01 if equal, and 10 if smaller. The operands are treated as signed values.

CPL GR, adr [, XR] - ComPare Logical
Similar to the CPA except that the operands are treated as unsigned values.

SLL GR, adr [, XR] –
Shift Left LogicalThe contents of the GR is shifted to the left by the effective address. The shifted out bits are
discarded and the vacated bits are filled with zeros. The FR is set according to the result of the operation.

SLA GR, adr [, XR] - Shift Left Arithmetic
The contents of the GR, except for the sign bit, is shifted to the left by the effective address. The shifted out
bits are discarded and the vacated bits are filled with zeros. The FR is set according to the result of the
operation.

SRL GR, adr [, XR] - Shift Right Logical
Right shift version of SLL.

SRA GR, adr [, XR] - Shift Right Arithmetic
Right shift version of SLA. The vacated bits are filled with the sign bit instead of zeros.

JPZ adr [, XR] - Jump on Plus or Zero
Branch to effective address (i.e. change the value of PC to the contents of the effective address) when the
value of FR is 00 or 01.

JMI adr [, XR] - Jump on MInus
Branch to effective address when the value of FR is 10.

JNZ adr [, XR] - Jump on Non Zero
Branch to effective address when the value of FR is 10 or 01.

JZE adr [, XR] - Jump on ZEro
Branch to effective address when the value of FR is 00.

JMP adr [, XR] - unconditional JuMP
Branch to effective address unconditionally.

PUSH adr [, XR] - PUSH effective address
Calculate the effective address and store it on the top of the stack.

POP GR - POP a value

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 233

Retrieve the address stored at the top of the stack to a GR.

CALL adr [, XR] - CALL subroutine
Push the address of the subsequent instruction (=PC+2) onto the stack then pass the control to specified
effective address.

RET - RETurn form subroutine
Branch to address popped from the stack.

CASL Specification

A CASL program consists of a sequence of statements. Each statement is written in a single line and consists of
up to four fields: [label] [instruction] [operands] [;comment]
A label is an identifier that is assigned the address of the first word of the instruction. Labels are limited to 6
characters. A label must start at the first column and begin with an upper case letter, followed by upper case
letters or digits.
An address in an instruction operand may be specified by a decimal number or by a label.
General purpose registers may be specified using a shorthand notation. The GR part may be omitted, so for
example 0 is equivalent to GR0.

CASL supports the following pseudo instructions:

label START [optional entry point]
This instruction begins a program block. The preceding label is mandatory and specifies the name of the block.
It is assigned the address of the optional entry point specified by a label defined within the block, and if it is
omitted, the address of the beginning of the block. A CASL program can consist of multiple blocks. The block
names are global, while the labels defined in a block are local to this block.

END
 Marks the end of a program block.

DC ... - Define Constant
Allocates a word (or words) of memory with initialized values. The operand may be a numeric constant or a
string of characters.
Numeric operands may be specified in decimal or hexadecimal notation, or by a label. Decimal constants may
be signed or unsigned. Hexadecimal constants are unsigned only and preceded with a # character. The value is
truncated to 16 bits and stored in a single word of the object program. String operands must be surrounded by
apostrophes.

DS n - Define Storage
Allocates the required number of words without initialization. The operand is a decimal number.

EXIT
Terminates the program execution.

CASL includes macro instructions for Input and Output:

IN input buffer, input length
When this instruction is encountered during program execution, the program halts and waits for the user to
enter a string of characters. When the user presses the EXE key, program execution continues. The input
length contains the string length. Both IN operands are specified by label names. The size of the input buffer
must be at least 80 words.

OUT output buffer, output length
The contents of the output buffer is displayed as characters. The output length contains the data size. After
displaying the string, the program execution pauses until any key is pressed. Both OUT operands are specified
by label names.

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 234

Error Messages

Errors detected during assembly (CASL):

OM out of memory
LA label undefined or multiply defined
OC operation error
OR operand error
SO block definition error, for example missing START or END

Run-time errors (COMET):

ST stack overflow/underflow
CD illegal opcode
AD illegal address

CASL Menu

[asmbl]
Assemble the selected sequential file.

[source]
View and edit the sequential file with an empty name. If such file doesn't already exist, it will be created.

[edit]
View and edit the selected sequential file.

[PRT SW]
Select whether to output the assembly listing to a printer.

key EXE
Assemble the selected sequential file then execute the resuling object code from the beginning (i.e. at the
entry point of the first block) without asking the user any questions.

COMET Menu

[go]
Run the object code at the specified address.

[dump]
Invokes the following submenu:

[object]
Display the memory contents starting from the specified address. The screen can be scrolled with the up/down
arrow keys. The value in the top row can be modified by pressing the left or right arrow key.

[regist]
Display and edit the contents of the registers.

[bpoint]
Specify a breakpoint address. The breakpoint can be cleared by typing an address outside the allowed range,
for example -1.

key EXE
Invokes the same function as the menu entry [object], but sets the starting address to #0000 without asking
the user.

[edit]
View and edit the source file.

[TR SW]

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 235

Select the trace mode allowing single-stepping through the code. The trace information can be directed to a
printer (with the menu entry LTRON).

key EXE
Run the object code from the beginning.

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 236

Example Programs

; Program to solve the Tower of Hanoi puzzle using recursive calls,
; taken from the Japanese Wikipedia
; http://ja.wikipedia.org/wiki/CASL
MAIN START
 LD GR0,N
 LD GR1,A
 LD GR2,B
 LD GR3,C
 CALL HANOI ;hanoi(3,A,B,C)
 EXIT

; hanoi(N,X,Y,Z)
HANOI CPA GR0,ONE ;if N==1 then
 JZE DISP ;move it, return
 SUB GR0,ONE ;N-1
 PUSH 0,GR2 ;swap GR2 GR3
 LEA GR2,0,GR3
 POP GR3
 CALL HANOI ;hanoi(N-1,X,Z,Y)
 ST GR1,MSG1
 ST GR2,MSG2 ;now GR2 holds Z
 OUT MSG,LNG ;'from X to Z'
 PUSH 0,GR2 ;rotate GR1-GR3
 LEA GR2,0,GR1
 LEA GR1,0,GR3
 POP GR3
 CALL HANOI ;hanoi(N-1,Y,X,Z)
 PUSH 0,GR2 ;restore registers
 LEA GR2,0,GR1
 POP GR1
 ADD GR0,ONE ;also restore N
 RET
DISP ST GR1,MSG1 ;'from X to Z'
 ST GR3,MSG2
 OUT MSG,LNG
 RET

ONE DC 1
N DC 3 ;number of disks
LNG DC 11 ;message length
A DC 'A'
B DC 'B'
C DC 'C'
MSG DC 'from '
MSG1 DS 1
 DC ' to '
MSG2 DS 1
 END

; Executing this code yields the following result (where from A to C means to
; move the disk at the top of A to C):
;

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 237

; From A to C
; From A to B
; From C to B
; From A to C
; From B to A
; From B to C
; From A to C

; Program to solve the eight queens puzzle,
; taken from the Calculator Benchmark web page
; http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=700
BGN START
 LEA GR0,8
 ST GR0,DIM
 LEA GR0,0
 LEA GR1,0
L00 CPA GR1,DIM
 JZE L05
 LEA GR1,1,GR1
 LD GR3,DIM
 ST GR3,ARY,GR1
L01 ADD GR0,ONE
 ST GR1,TMP
 LD GR2,TMP
L02 LEA GR2,-1,GR2
 JZE L00
 LD GR3,ARY,GR1
 SUB GR3,ARY,GR2
 JZE L04
 JPZ L03
 EOR GR3,FFH
 LEA GR3,1,GR3
L03 ST GR2,TMP
 ADD GR3,TMP
 ST GR1,TMP
 SUB GR3,TMP
 JNZ L02
L04 LD GR3,ARY,GR1
 LEA GR3,-1,GR3
 ST GR3,ARY,GR1
 JNZ L01
 LEA GR1,-1,GR1
 JNZ L04
L05 EXIT
ONE DC 1
FFH DC #FFFF
DIM DS 1
TMP DS 1
ARY DS 9
 END

; The result is stored in the array ARY. Also the register GR0 contains the
; number of iterations (876).

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 238

; This program calculates and displays a square root of an integer number
; entered by the user. It illustrates the usage of multiple blocks.
MAIN START
 IN BUF1,SIZE1
 LEA GR1,BUF1
 LD GR2,SIZE1
 CALL ATOI
 ST GR0,TEMP
 LEA GR1,BUF3
 CALL ITOA
 LD GR0,TEMP
 CALL SQRT
 LEA GR0,0,GR1
 LEA GR1,BUF4
 CALL ITOA
 OUT BUF2,SIZE2
 EXIT
BUF1 DS 80
SIZE1 DS 1
BUF2 DC 'SQRT ('
BUF3 DS 5
 DC ') = '
BUF4 DS 5
SIZE2 DC 20
TEMP DS 1
 END

; convert a string to an unsigned integer in GR0
; string address in GR1, length in GR2
ATOI START
 LEA GR0,0
L01 LEA GR2,-1,GR2
 JMI L02
 LD GR3,0,GR1
 LEA GR3,-48,GR3
 JMI L03
 ST GR3,TEMP1
 LEA GR3,-10,GR3
 JPZ L03
 SLL GR0,1
 ST GR0,TEMP2
 SLL GR0,2
 ADD GR0,TEMP2
 ADD GR0,TEMP1
 LEA GR1,1,GR1
 JMP L01
L02 LEA GR2,1,GR2
L03 RET
TEMP1 DS 1
TEMP2 DS 1
 END

; convert an unsigned integer GR0 to decimal
; result at the address GR1
ITOA START

Kapitel: VIII. CASL

8-2 Japanese CASL Wikipedia Article Seite 239

 LEA GR2,4
L01 LD GR3,ZERO
L02 CPL GR0,TENS,GR2
 JMI L03
 SUB GR0,TENS,GR2
 LEA GR3,1,GR3
 JMP L02
L03 ST GR3,0,GR1
 LEA GR1,1,GR1
 LEA GR2,-1,GR2
 JNZ L01
 ADD GR0,ZERO
 ST GR0,0,GR1
 RET
ZERO DC '0'
TENS DC 1
 DC 10
 DC 100
 DC 1000
 DC 10000
 END

; square root of an unsigned integer
; radicand = GR0, root = GR1
SQRT START
 LEA GR1,0 ;root
 LEA GR2,0 ;remainder
 LEA GR3,8 ;number of root bits
; shift 2 bits from the radicand to the remainder
L01 SLL GR2,2
 ST GR0,TEMP1
 SRL GR0,14
 ST GR0,TEMP2
 ADD GR2,TEMP2
 LD GR0,TEMP1
 SLL GR0,2
; try to subtract 4*root+1 from the remainder
 SLL GR1,2
 LEA GR1,1,GR1
 ST GR1,TEMP2
 SRL GR1,1
 CPL GR2,TEMP2
 JMI L02
 SUB GR2,TEMP2
 LEA GR1,1,GR1
; next bit of the root
L02 LEA GR3,-1,GR3
 JNZ L01
 RET
TEMP1 DS 1
TEMP2 DS 1
 END

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 240

8-3 CASL From the Original Manual

get it start with ON / CASL

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 241

a CASL Project „Jozan“

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 242

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 243

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 244

The CASL Code in the Original Manual

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 245

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 246

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 247

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 248

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 249

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 250

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 251

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 252

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 253

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 254

Kapitel: VIII. CASL

8-3 CASL From the Original Manual Seite 255

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 256

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp …

The next sides are tranlated from the Inet-side: http://www5a.biglobe.ne.jp/~teamcasl/caslkozatop.htm
The TeamCASL pages präsent the CASL II instruction.

The CASL introduction corner – Table Contents

1. Basic structure of CASLII

program

① Basic rules of the

program

② Program example 1

③ Program example 2

5. Branch instruction

① JPL instruction

② JMI instruction

③ JNZ instruction

④ JZE instruction

⑤ JOV instruction

⑥ JUMP instruction

9. Other orders

① SVC instruction

② NOP instruction

2. Load store instruction

① LD instruction

② ST instruction

③ LAD instruction

6. Shift operation instruction

① SLA instruction

② SRA instruction

③ SLL instruction

④ SRL instruction

10. Macro instruction

① IN instruction

② OUT instruction

③ RPUSH instruction

④ RPOP instruction

3. Operation instruction

① ADDA instruction

② ADDL instruction

③ SUBA instruction

④ SUBL instruction

⑤ AND instruction

⑥ OR instruction

⑦ XOR instruction

7. Stack operation

instruction

① PUSH instruction

② POP instruction

③ Program example

11. Assembler instructions

① START instruction

② END instruction

③ DS instruction

④ DC instruction

4. Comparison operation

instruction

① CPA instruction

② CPL instruction

8. Call return instruction

① CALL instruction

② RET instruction

③ Program example

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 257

1. Basic structure of CASL II Program

 Basic rules of CASLII program

⚫ Write in labels, instructions, and operands (arguments)

⚫ Command words are written in uppercase letters

⚫ Start with START command, end program with END command

⚫ Label the START instruction line

Examples 1 and 2 show the basic structure of the program.

Example 1

label order operand

PROG1 START GO

DATA1 DC 1

DATA2 DC Two

ANS DS 1

GO LD GR0, DATA1

 ADDA GR0, DATA2

 ST GR0, ANS

 END

Example 2.

PROG2 START

 LD GR0, DATA1

 ADDA GR0, DATA2

 ST GR0, ANS

 RET

DATA1 DC 1

DATA2 DC Two

ANS DS 1

 END

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 258

2. Load / store instruction

Assembler languages such as CASL first read data from memory into a storage device called a

register, and then perform calculations.

This section describes the instructions for exchanging data between memory and registers.

(1) LD instruction Instruction to read data from memory to register

Description method

label LD GRx, address [, GRx]

The contents of the address are stored in GRx.

The register described after the address specifies the index register. (Optional)

The relative position of the address can be specified by using the index register.

Omit the index address specification.

When trying to process data in a program, you must use the LD instruction.

Program example.

PROG_LD START GO; Start processing from label GO

ADR DC 10; Define constant 10

GO LD GR0, ADR; 10 is stored in GR0
END

(2) ST instruction Instruction to write data in the register to memory

Description method

label ST GRx, address [, GRx]

This is an instruction to write the data in the register to the memory.

Program example.

PROG_ST START GO

ANS DS 1; Secures one word length for data storage area

 GO ST GR1, ANS; GR1 content in ANS
END

(3) LAD instruction Instruction to store address directly

Description method

label LAD GRx, address [, GRx]

Store the address in a register.

Difference from LD instruction The LD instruction reads the contents of the specified address .

The LAD instruction reads the specified address .

Program example.

PROG_LAD START GO

ADR DC 1

GO LAD GR2, ADR; GR2 contains ADR address instead of

1
END

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 259

3. Operation instruction

CASL provides arithmetic and logic instructions.

(1) ADDA arithmetic addition instruction

Description method

label ADDA r, address [, x]

Adds the contents of the address to the value stored in r and stores it in r.

In the expression, r = r + the contents of the address.

Program example.

PRG_ADDA START

 LD GR0, DATA1; Read data to register

 ADDA GR0, DATA2; Add contents of DATA2 to GR0

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1; Secure data storage area

 END

(2) ADDL instruction Logical addition instruction

Description method

label ADDL r, address [, x]

Adds the contents of the address to the value stored in r and stores it in r.

Works the same as r = r + contents of address.

The difference from the ADDA instruction is handled as if there is no sign (+,-).

In other words, we don't think about minus.

Program example.

PRG_ADDL START

 LD GR0, DATA1; Read data to register

 ADDL GR0, DATA2; Add contents of DATA2 to GR0

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1; Secure data storage area

 END

(3) SUBA instruction Arithmetic subtraction instruction

Description method

label SUBA r, address [, x]

This is equivalent to the expression r = r – address content.

Program example.

PRG_SUBA START Start processing from GO

DATA1 DC 3; Data definition

DATA2 DC 1; data definition

ANS DS 1; data definition

GO LD GR2, DATA1; Load the contents of DATA1 into GR2

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 260

 SUBA GR2, DATA2; Subtract the contents of DATA2 from GR2

 ST GR2, ANS; Store result in ANS

 END

(4) SUBL instruction Logical subtraction instruction

Description method

label SUBL r, address [, x]

This is equivalent to the expression r = r – address contents.

Program example.

PRG_SUBL START Start processing from GO

DATA1 DC 3; Data definition

DATA2 DC 1; data definition

ANS DS 1; data definition

GO LD GR2, DATA1; Load the contents of DATA1 into GR2

 SUBL GR2, DATA2; Subtract the contents of DATA2 from GR2

 ST GR2, ANS; Store result in ANS

 END

(5) AND instruction Logical product instruction

Description method

label AND r, address [, x]

Performs a logical AND with r and the contents of the address, and stores the result in r.

Program example (Example of a program that retrieves the first bit information of DATA)

PRG_AND START Start processing from GO

DATA DC #FFFF; Data definition

MASK DC # 0001; Data definition

ANS DS 1; data definition

GO LD GR2, DATA1; Load the contents of DATA into GR2

 AND GR2, MASK; Perform logical AND with the contents of

GR2 and MASK

 ST GR2, ANS; Store result in ANS

 END

(6) OR instruction OR instruction

Description method

label OR r, address [, x]

Perform a logical sum of r and the contents of the address, and store the result in r.

Program example (Example of overlapping the contents of DATA and MASK)

PRG_AND START Start processing from GO

DATA DC # 0FF0; Data definition

MASK DC # 3001; Data definition

ANS DS 1; data definition

GO LD GR2, DATA1; Load the contents of DATA into GR2

 OR GR2, MASK; Perform a logical OR operation on the

contents of GR2 and MASK

 ST GR2, ANS; Store result in ANS

 END

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 261

(7) XOR instruction Exclusive OR instruction

Description method

label XOR r, address [, x]

Performs an exclusive OR operation on r and the contents of the address, and stores the result in r.

Program example (Program example for bit-reversing the contents of DATA)

PRG_AND START Start processing from GO

DATA DC # 1010; Data definition

MASK DC #FFFF; Data definition

ANS DS 1; data definition

GO LD GR2, DATA1; Load the contents of DATA into GR2

 XOR GR2, MASK; Perform exclusive OR on the contents of

GR2 and MASK

 ST GR2, ANS; Store result in ANS

 END

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 262

4. Comparison operation instruction

In CASL, the comparison instruction only performs a comparison operation.

Performs the same operation as IF in combination with a branch instruction.

Here, only the comparison operation instruction is described.

See the branch instruction for the specific selection syntax. (⑤ branch instruction)

(1) CPA instruction Arithmetic comparison instruction

Description method

label CPA r, address [, x]

This instruction internally subtracts (r-the contents of the address) and stores the result in the flag

register.

The difference from the subtraction instruction is that the result is not the value of the subtraction,

and whether the result of the subtraction is positive, negative, or zero is stored in the flag register.

Program example.

PRG_CPA START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 RET ;The end of the program

DATA1 DC 1; Define data

DATA2 DC 2; Define data

 END

(2) CPL instruction Logical comparison instruction

Description method

label CPL r, address [, x]

This instruction internally subtracts (r-the contents of the address) and stores the result in the flag

register.

The difference from the subtraction instruction is that the result is not the value of the subtraction,

and whether the result of the subtraction is positive, negative, or zero is stored in the flag register.

A logical operation is an operation in which the contents of an address are treated as numbers that do

not handle signs (positive numbers).

Program example.

PRG_CPL START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 RET ;The end of the program

DATA1 DC 1; Define data

DATA2 DC 2; Define data

 END

PRG_CPA START

 LD GR0, DATA1; Read data to register

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 263

5. Branch Instruction

In CASL, a branch instruction is combined with a comparison instruction to create an IF structure.

In addition to unconditional branch instructions, there are conditional branches that branch

depending on the value of the flag register.

(1) JPL instruction Instruction to branch if the flag register is positive

Description method

label JPL Address [, x]

Branches to the address when the value of the flag register is positive.

Program example.

(Compares the contents of DATA1 and DATA2, ends if DATA1> DATA2, adds if DATA1 ≦

DATA2)

PRG_JPL START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 JPL JMP; If CPA result is positive, go to JMP

 ADDA GR0, DATA2; Addition

 ST GR0, ANS; Store addition result in ANS

JMP RET ; End of program * Here is the jump destination

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1

 END

(2) JMI instruction Instruction to branch if the flag register is negative

Description method

label JMI Address [, x]

Branches to the address when the value of the flag register is negative.

Program example.

(Compares the contents of DATA1 and DATA2, ends if DATA1 <DATA2, subtracts if DATA1 ≧

DATA2)

PRG_JMI START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 JMI JMP; If CPA result is negative, go to JMP

 SUBA GR0, DATA2; Subtraction

 ST GR0, ANS; Store addition result in ANS

JMP RET ; End of program * Here is the jump destination

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1

 END

(3) JNZ instruction Instruction to branch if the flag register is not zero

Description method

label JNZ Address [, x]

Branches to the address when the value of the flag register is not zero.

Program example.

(Compares the contents of DATA1 and DATA2, ends if DATA1 <> DATA2, and adds if DATA1 =

DATA2)

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 264

PRG_JNZ START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 JNZ JMP; If CPA result is not zero, go to JMP

 ADDA GR0, DATA2; Addition

 ST GR0, ANS; Store addition result in ANS

JMP RET ; End of program * Here is the jump destination

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1

 END

(4) JZE instruction Instruction to branch if the flag register is positive

Description method

label JZE Address [, x]

Branch to the address when the value of the flag register is zero.

Program example.

(Compares the contents of DATA1 and DATA2, ends if DATA1 = DATA2, adds if DATA1 <>

DATA2)

PRG_JZE START

 LD GR0, DATA1; Read data to register

 CPA GR0, DATA2; Compare the contents of DATA2 to GR0

 JZE JMP; If CPA result is zero, go to JMP

 ADDA GR0, DATA2; Addition

 ST GR0, ANS; Store addition result in ANS

JMP RET ; End of program * Here is the jump destination

DATA1 DC 1; Define data

DATA2 DC 2; Define data

ANS DS 1

 END

(5) JOV instruction Instruction to branch if the flag register overflows

Description method

label JPL Address [, x]

Branches to the address when the value of the flag register is positive.

Program example.

PRG_JOV START

 LD GR0, DATA1; Read data to register

 ADDA GR0, DATA2; Add contents of DATA2 to GR0

 JOV JMP; If the addition result overflows, go to JMP

 ST GR0, ANS; Store addition result in ANS

JMP RET ; End of program * Here is the jump destination

DATA1 DC #FFFF; Define data

DATA2 DC 1; Define data

ANS DS 1

 END

(6) JUMP instruction Instruction that branches unconditionally

Description method

label JUMP Address [, x]

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 265

Branch to address unconditionally.

Program example. (3x2 calculation program)

PRG_JUMP START

 LAD GR1,0; Set GR1 to 0

LOOP CPA GR1, LIMIT; Compare the contents of GR1 and LIMIT

 JPL OWARI; to OWARI

 JZE OWARI; to OWARI

 ADDA GR0, DATA

 LAD GR1,1, GR1; Count up

 JUMP LOOP

JMP ST GR0, ANS

 RET ; End of program * Here is the jump destination

DATA DC 3; Define data

LIMIT DC 2; Define data

ANS DS 1

 END

6. Shift operation instruction

CASL provides an operation instruction to perform a bit shift.

Multiplication and division can be performed by combining shift operations.

(1) SLA instruction Instruction to perform arithmetic left shift.

Description method

label SLA r, address [, x]

The data in r is shifted to the left by the number of bits specified by the address , leaving the sign bit

unchanged . Empty bits are filled with 0.

Program example.

(The contents of DATA are shifted left by 2 bits. Perform 8 × 4.)

PRG_SLA START

 LD GR0, DATA; Read data into register

 SLA GR0,2; Shift left by 2 bits

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1

 END

(2) SRA instruction This instruction performs an arithmetic right shift.

Description method

label SRA r, address [, x]

The data in r is shifted right by the number of bits specified by the address , leaving the sign bit as it

is . The vacant bits are the same as the sign bits.

Program example.

(The contents of DATA are shifted right by 2 bits. Perform 8 ÷ 4.)

PRG_SRA START

 LD GR0, DATA; Read data into register

 SRA GR0,2; shift right by 2 bits

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 266

DATA DC # 0008; Define data

ANS DS 1

 END

(3) SLL instruction Instruction to perform logical left shift.

Description method

label SLL r, address [, x]

The data in r is shifted to the left by the number of bits specified by the address without regard to the

sign bit . Empty bits are filled with 0.

Program example.

(The contents of DATA are shifted left by 2 bits.)

PRG_SLL START

 LD GR0, DATA; Read data into register

 SLL GR0,2; Shift left by 2 bits

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1

 END

(4) SRL instruction Instruction to perform logical right shift

Description method

label SRL r, address [, x]

The data in r is shifted to the left by the number of bits specified by the address without regard to the

sign bit . Empty bits are filled with 0.

Program example.

(The contents of DATA are shifted right by 2 bits.)

PRG_SRL START

 LD GR0, DATA; Read data into register

 SRL GR0,2; shift right by 2 bits

 ST GR0, ANS; Store result in ANS

 RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1

 END

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 267

7. Stack operation instructions

COMET has a memory area called a stack.

The stack has a special way of remembering that the data stored later is retrieved first.

By using the stack, you can reverse the order of the data and use it in various ways.

(1) PUSH instruction An instruction to store data on the stack.

Description method

label PUSH Address [, x]

Store the address on the stack and store the address in the stack pointer.

(2) POP instruction An instruction to retrieve data from the stack.

Description method

label POP r

Reads the data stored in the stack into r.

Program example (Change the order of DATA1 and DATA2)

PUSHPOP START

 LD GR1, DATA1

 LD GR2, DATA2

 PUSH 0, GR1

 PUSH 0, GR2

 POP GR1

 POP GR2

 RET

DATA1 DC 1

DATA2 DC Two

 END

8. Call return instruction

A call return instruction is an instruction that calls a subroutine.

(1) CALL instruction Instruction to call a subroutine. (Jump to subroutine)

Description method

label CALL Address [, x]

Processing is passed to the subroutine at the address.

(2) RET instruction Instruction to return processing to main processing.

Description method

label RET

Processing returns to the caller.

Program example (Data is read in main processing and sub processing)

CALL_RET START

 LD GR0, DATA1

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 268

 CALL TEST; The processing moves to the subroutine of the

TEST label.

 RET ; Process moves to OS. That means the end of the program

DATA1 DC 1

 END

;

TEST START

 LD GR1, DATA2

 RET ; Process returns to CALL_RET side.

DATA2 DC Two

 END

9. Other instructions

Introduces SVC and NOP instructions that call OS functions.

(1) SVC instruction An instruction that calls the OS function. (Jump to subroutine defined by OS)

Description method

label SVC Address [, x]

Used to call OS functions.

* Note : The operation is determined by the CASL processing system (simulator, etc.). Check the

specifications of the simulator used.

CASL2000 allows input, output and decimal output.

For details, refer to the help included with CASL2000.

(2) NOP instruction An instruction that does nothing.

Description method

label NOP

As the name implies, it is an instruction that does nothing.

Only the count up of the program register is performed.

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 269

10. Macro instruction

Predefined instructions combining machine language instructions are called macro instructions.

In CASL, input / output instructions do not exist as machine language. Defined as a macro

instruction combining SVC instructions. There are some other macro instructions.

(1) IN instruction Input instruction

Description method

label IN Input data storage address , input character number storage

address

Instruction to enter. In CASL2000, input from the keyboard.

Note that the input method differs depending on the simulator used.

Input characters are stored from the first address.

The number of characters entered is stored in the second address.

Note that if you enter a number, it will be treated as a number (character).

If you want to perform calculations such as addition on the "number" you have entered, you need to

convert it to a number.

Example. Converts the entered single digit to a numeric value.

PROG_IN START

 IN DATA, SUU; Enter characters

 LD GR0, DATA

 SUBA GR0, HENKAN; Convert numbers to numbers

 ST GR0, ANS

 RET

DATA DS 1

SUU DS 1

ANS DS 1

HENKAN DC # 0030; Data for conversion

 END

(2) OUT instruction Output instruction.

Description method

label OUT Output data storage address, number of output characters

Instruction to output.

Outputs the data stored from the output data storage address for the number specified by the number

of output characters.

Example. Outputs the input character string.

PROG_OUT START

 IN DATA, SUU; Input

 OUT DATA, SUU; Output the input data as it is

 RET

DATA DS 20

SUU DS 1

 END

(3) RPUSH instruction An instruction to store the contents of GR on the stack.

Description method

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 270

label RPUSH

This instruction stores the contents of GR on the stack in the order of GR1, GR2, ..., GR7.

(4) RPOP instruction This instruction stores the contents of the stack in GR.

Description method

label RPOP

This instruction stores the contents of the stack in the order of GR7, GR6, ..., GR1.

Example. Temporarily save the contents of the register and restore it.

RPUSHPOP START

 RPUSH

 RPOP

 RET

 END

11. Assembler instructions

Assembler instructions are instructions for controlling the assembler. It is not converted directly to

machine language.

(1) START command Command that indicates the start of a program

Description method

label START address

Indicates the start of a program.

This line must be labeled.

If an address is described in the operand, the program starts from that address.

(2) END instruction Instruction indicating the end of the program

Description method

 END

Indicates the end of the program.

(3) DS instruction Instruction to secure area

Description method

label DS Number of words

Allocates a memory area for the number of words specified.

(4) DC instruction Instruction for defining constants

Description method

label DC Constant [, constant] ・ ・ ・

Define a constant.

The constant is

Decimal number: Number between -32768 and 32767

Hexadecimal: #hhhh 4-digit hexadecimal number starting with a sharp (0 to 9, A to F)

Character string: '' Enclose in single quotation Address: Write the label

Kapitel: VIII. CASL

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp … Seite 271

Kapitel: IX. Manuals

 Seite 272

Kapitel: IX. Manuals

 Seite 273

© 2020 created and translated from P.Rost

Kapitel: IX. Manuals

 Seite 274

	Casio FX-870P Casio VX-4
	Table of Contents
	Introduction about FX-870P / VX-4
	I. Basic Operation
	1-1 Casio VX-4
	1-2 Battery replacement
	1-3 Power ON / OFF and contrast adjustment
	Power on
	Power off
	Contrast adjustment

	1-4 VX-4 - FX-870P - Modi
	1-5 Calculation in CAL- or RUN-Mode
	1-6 Display
	Display 4 Lines and virtuell Display 8 Lines
	Selftest:

	1-7 Accessories for the FX-870P / VX-4
	FP-40:
	FA-6:
	MD-110
	FA-8:
	RS232C:
	RP-8 = 8Kb, RP-33 = 32Kb RAM Speicher:
	USB-Interface-Kabel for FX-850P to VX-4 (Inet 2020)

	1-8 Romaji – Tabellen (Shift CAPS & …)

	II. BASIC - Referenz
	Table of Contents
	The FX-850P, FX-870P, FX-880P, FX-890P, VX-1 to 4, Z-1 and PB-1000 Series
	2-1 The BASIC Token
	2-2 How to enter BASIC Mode
	2-3 Grammar Overview
	2-4 BASIC Manual Commands
	2-5 BASIC Program Commands
	2-6 File Descriptor
	2-7 BASIC Built-in Functions
	2-8 BASIC Logical Operations, etc.
	2-9 Arithmetic Priority
	2-10 BASIC Error Messages
	2-11 Character Code Table

	III. Internal Information
	Table of Contents
	3-1 Machine language related
	Memory Map
	System Area (BASIC)
	ROM Routine

	3-2 BASIC Related
	Hidden BASIC Instructions
	BASIC Program and (Text) File Storage Format
	Storage Format of Variable Data

	3-3 Appendix
	3-4 BASIC Programs

	IV. C - Referenz
	4-1 Sides from the Original Manual:
	4-2 The C-Code in Original Manual

	V. F:COM
	VI. STAT
	VII. HD61700 Cross Assembler
	Table of Contents
	List of Pseudo Instructions
	List of Registers
	List of Mnemonics
	7-1 HD61700 Cross Assembler
	Assembling Method
	Assembler Options
	Execution of Output Format and Machine Language
	BAS format
	PBF format
	QL format

	Error Message

	7-2 MPU architecture
	Features
	Register Configuration
	2) Six 16-bit registers

	7-3 Assembler
	Assembler format
	Pseudo instructions
	Programming points
	Mnemonic Format

	7-4 Mnemonic
	7-5 Instruction set Table
	7-6 Appendix
	Output format and loader
	BAS Format
	BAS format files in Table
	PBF format
	QL Format

	7-7 References and links
	7-8 Figure
	7-9 Revision information

	VIII. CASL
	8-1 What is CASL / COMET?
	8-2 Japanese CASL Wikipedia Article
	Overview
	COMET Specification
	The following Data Types are Supported:
	The Registers are as Follows:
	Instruction Format:
	Instruction set summary:
	CASL Specification
	CASL supports the following pseudo instructions:
	CASL includes macro instructions for Input and Output:
	Error Messages
	CASL Menu
	COMET Menu
	Example Programs

	8-3 CASL From the Original Manual
	a CASL Project „Jozan“
	The CASL Code in the Original Manual

	8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp …
	The CASL introduction corner – Table Contents
	1. Basic structure of CASL II Program
	2. Load / store instruction
	3. Operation instruction
	4. Comparison operation instruction
	5. Branch Instruction
	6. Shift operation instruction
	7. Stack operation instructions
	8. Call return instruction
	9. Other instructions
	10. Macro instruction
	11. Assembler instructions

	IX. Manuals

